

COSC579: Radiometry

Jeremy Bolton, PhD Assistant Teaching Professor

A special thanks to professors and researchers professor and researchers Yung-Yu Chuang, Fredo Durand, Alexei Efros, William Freeman, James Hays, Svetlana Lazebnik, Andrej Karpathy, Fei-Fei Li, Srinivasa Narasimhan, Silvio Savarese, Steve Seitz, Noah Snavely, Richard Szeliski, and Li Zhang.

Light

Readings
– Szeliski, 2.2, 2.3.2

Properties of light

- Today
 - What is light?
 - How do we measure it?
 - How does light propagate?
 - How does light interact with matter?

Radiometry

• What determines the brightness of an image pixel?

Reflection: An Electromagnetic Phenomenon

Two approaches to derive Reflectance Models:

- Physical Optics (Wave Optics)
- Geometrical Optics (Ray Optics)

Geometrical models are approximations to physical models But they are easier to use!

Radiometry

• What determines the brightness of an image pixel?

What is light?

Electromagnetic radiation (EMR) moving along rays in space

- Radiance $L(\lambda)$ is EMR, measured in units of power (watts)
 - $-\lambda$ is wavelength

Perceiving light

- How do we convert radiation into "color"?
- What part of the spectrum do we see?

Visible light

We "see"

 electromagnetic
 radiation in a range of
 wavelengths

Light spectrum

- The appearance of light depends on its power **spectrum**
 - How much power (or energy) at each wavelength

Our visual system converts a light spectrum into "color"

• This is a rather complex transformation

Light transport

Light sources

- Basic types
 - point source
 - directional source
 - a point source that is infinitely far away
 - area source
 - a union of point sources
- More generally
 - a light field can describe *any* distribution of light sources
- What happens when light hits an object?

What happens when a light ray hits an object?

- Some of the light gets absorbed
 - converted to other forms of energy (e.g., heat)
- Some gets transmitted through the object
 - possibly bent, through "refraction"
 - a transmitted ray could possible bounce back
- Some gets reflected
 - as we saw before, it could be reflected in multiple directions (possibly all directions) at once
- Let's consider the case of reflection in detail

Reflectance spectrum (albedo)

• To a first approximation, surfaces absorb some wavelengths of light and reflect others

• These spectra are multiplied by the spectra of the incoming light, then by the spectra of the sensors *GEORGETON*

Material Properties

Classic reflection behavior

GEORGETOWN UNIVERSITY

The BRDF

- The Bidirectional Reflection Distribution Function
 - Given an incoming ray (θ_i, ϕ_i) and outgoing ray (θ_e, ϕ_e) what proportion of the incoming light is reflected along outgoing ray?

Answer given by the BRDF: $\rho(\theta_i, \phi_i, \theta_e, \phi_e)$

Constraints on the BRDF

- Energy conservation
 - Quantity of outgoing light ≤ quantity of incident light
 - integral of BRDF ≤ 1
- Helmholtz reciprocity
 - reversing the path of light produces the same reflectance

BRDF's can be incredibly complicated...

GEORGETOWN UNIVERSITY

- Diffuse reflection
 - Dull, matte surfaces like chalk or latex paint
 - Microfacets scatter incoming light randomly
 - Effect is that light is reflected equally in all directions

Diffuse reflection

Diffuse reflection governed by Lambert's law

- Viewed brightness does not depend on viewing direction
- Brightness *does* depend on direction of illumination
- This is the model most often used in computer vision

BRDF models

- Phenomenological
 - Phong [75]
 - Ward [92]
 - Lafortune et al. [97]
 - Ashikhmin et al. [00]
- Physical
 - Cook-Torrance [81]
 - Dichromatic [Shafer 85]
 - He et al. [91]
- Here we're listing only some well-known examples

Measuring the BRDF

- Gonioreflectometer
 - Device for capturing the BRDF by moving a camera + light source
 - Need careful control of illumination, environment

Why models for light?

- Why model these complex processes?
- Vision is all about extracting information about a scene from its 2-d representation
 - Shape from shading
 - Surface Properties
 - Texture Features
 - Information from reflections
 - Atmosphere

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
 - assume a few of the normals are known (e.g., along silhouette)
 - constraints on neighboring normals—"integrability"
 - smoothness
- Hard to get it to work well in practice

Photometric stereo: for estimating surface normal (shape!)

Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} \mathbf{N}$$

Light and Shadows

Reflections

Refractions

Interreflections

Scattering

De-hazed

More Complex Appearances

Appendix: Measuring Light

Jeremy Bolton, PhD Assistant Teaching Professor

A special thanks to many contributors over the years: Szeliski, Snavely, Adelson

