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Light

* Readings
— Szeliski, 2.2, 2.3.2
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Properties of light

« Today
— What is light?
— How do we measure it?
— How does light propagate?
— How does light interact with matter?
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Radiometry

« What determines the brightness of an image pixel?
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Reflectance Models

Reflection: An Electromagnetic Phenomenon

A

Two approaches to derive Reflectance Models:

— Physical Optics (Wave Optics)
— Geometrical Optics (Ray Optics)

Geometrical models are approximations to physical models
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Radiometry

« What determines the brightness of an image pixel?

Light source
properties

Sensor characteristics

/ Exposure
P

Surface reflectance
properties
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What is ight?

Electromagnetic radiation (EMR) moving along rays in space

« Radiance L(1) is EMR, measured in units of power (watts)
— ) is wavelength

3

Perceiving light
« How do we convert radiation into “color™?
« What part of the spectrum do we see?

A
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We “see”
electromagnetic
radiation in a range of
wavelengths

Visible light
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Light spectrum

* The appearance of light depends on its power spectrum
— How much power (or energy) at each wavelength

1.0 B

Relative power
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Wavelength (nm)

daylight tungsten bulb

Our visual system converts a light spectrum into “color”
» This is a rather complex transformation
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Light transport

||Iumina+ioy Perception
ﬂ k REﬂ EC'I'ancE @

FEORGETOW:
glﬂVIT/.ERSI Tl'g('



Light sources

« Basic types
— point source

— directional source
 a point source that is infinitely far away

— dalea source
« a union of point sources

* More generally
— a light field can describe *any* distribution of light sources

« What happens when light hits an object?
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What happens when a light ray hits an object?

« Some of the light gets absorbed
— converted to other forms of energy (e.g., heat)

« Some gets transmitted through the object
— possibly bent, through “refraction”
— a transmitted ray could possible bounce back

« Some gets reflected

— as we saw before, it could be reflected in multiple
directions (possibly all directions) at once

 |Let’s consider the case of reflection in detail
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Reflectance spectrum (albedo)

« To a first approximation, surfaces absorb some
wavelengths of light and reflect others

Reflectance spectrum of a “red" surface 1009
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* These spectra are multiplied by the spectra of the

iIncoming light, then by the spectra of the sensors
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Material Properties
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Classic reflection behavior
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The BRDF

 The Bidirectional Reflection Distribution Function

— Given an incoming ray (6, ¢;) and outgoing ray (e, ¢e)
what proportion of the incoming light is reflected along outgoing ray?
)‘.{_ A/ surface normal

6,
O,

v

Answer given by the BRDF: /O(QZ, gbi, 96’7 Cbe).ORGETOWN
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Constraints on the BRDF

« Energy conservation

— Quantity of outgoing light < quantity of incident light
* integral of BRDF <1

* Helmholtz reciprocity
— reversing the path of light produces the same reflectance
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BRDF’s can be incredibly complicated...
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Diffuse reflection

b

 Diffuse reflection
— Dull, matte surfaces like chalk or latex paint
— Microfacets scatter incoming light randomly

— Effect is that light is reflected equally in all
directions
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Diffuse reflection

Diffuse reflection governed by Lambert’s law
* Viewed brightness does not depend on viewing direction
* Brightness does depend on direction of illumination
« This is the model most often used in computer vision

283 Lambert's Law: [, = k4N - LI;
k4 is called albedo
BRDF for Lambertian surface

p(0;, Pi, Oe, Pe) = deOSHiRGETOWJ\C
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L, N, V unit vectors
| = outgoing radiance
l; = incoming radiance



BRDF models

 Phenomenological
— Phong [75]
— Ward [92]
— Lafortune et al. [97]
— Ashikhmin et al. [00]
* Physical
— Cook-Torrance [81]
— Dichromatic [Shafer 85]
— He et al. [91]

* Here we're listing only some well-known examples
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Measuring the BRDF

Half-Silvered

traditional design by Greg Ward

 Goniloreflectometer

— Deuvice for capturing the BRDF by moving a camera + light source
— Need careful control of illumination, environment
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Why models for light?

 Why model these complex processes?

 Vision is all about extracting information about a scene from its 2-d
representation

— Shape from shading

— Surface Properties

— Texture Features

— Information from reflections
— Atmosphere
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Shape from shading
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You can directly measure angle between normal and light source
* Not quite enough information to compute surface shape
« But can be if you add some additional info, for example
— assume a few of the normals are known (e.g., along silhouette)
— constraints on neighboring normals—“integrability”
— smoothness

« Hard to get it to work well in practice
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Photometric stereo:
for estimating surface normal (shape!)
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Light and Shadows
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Reflections
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Refractions
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Interreflections
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Mies Courtyard House with Curved Elements

4 1@' ;

FEORGETOW:
glﬂVIVERSI 7*1'2(



Scattering

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



FEORGETOW:
glﬂVIVERSI 7*1'2(



FEORGETOW:
glﬂVIT/.ERSI Tl'g('



FEORGETOW:
glﬂVIT/.ERSI Tl'g('



EORGETOW:
gU}VIV.ERSI Tl.g\c



FEORGETOW:
glﬂVIT/.ERSI Tl'g('



EORGETOW:
gU}VIV.ERSI Tl.g\c



FEORGETOW:
glﬂVIT/.ERSI Tl'g('



EORGETOW:
gU}VIV.ERSI Tl.g\c



More Complex Appearances
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Appendix: Measuring Light

Jeremy Bolton, PhD
Assistant Teaching Professor

A special thanks to many contributors over the
years: Szeliski, Snavely, Adelson
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