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Overview

Linear Algebra Review
* Homogeneous vs non-homogeneous representations
* Projections and Transformations

Scene Geometry

The pinhole projection model
— Qualitative properties

— Perspective projection matrix
Cameras with lenses

— Depth of focus

— Field of view
— Lens aberrations
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Scene Geometry, Projection, and Perspective

- N
COOIOPtica””usions.com

* Readings

— Szeliski 2.1
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Projection

Readings

— Szeliski 2.1
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Dimensionality Reduction (3D to 2D)

3D world 2D image

O

What have we lost?
* Angles

 Distances (lengths) GEORGETOWIN_.
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Linear Algebra and Projections

« Before we dive into camera geometry, lets introduce some
notation and review linear algebra.

« 2-D points will be used to represent pixel coordinates: points in a
(image) plane. (non-homogeneous)

ag

r = (z,y) € R%
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Homogeneous and Non-homogeneous Vectors

« 2-D points can be represented by a vector and a weight.
« Homogeneous
* P2 is the 2-d projective space

& = (z,9,w) € P

%= (%,§,0) = w(z,y,1) = 0T

where & = (z, vy, 1) is the augmented vector
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Why Homogeneous Coordinates?

* Homogeneous representation permits linear matrix
operations for transformations used in Computer Vision

How? add one more coordinate:

- - x
v Y
(z,y) = | ¥ (z,y,2) = |
L 1 A I 1 ]
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates

y | = (@/w,y/w) 7| = (@/w,y/w, z/w)
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Lines

2-D Lines can also be represented using homogeneous

coordinates - |
[ = (a.b.c)

Corresponding line equation -

T-l=ar+by+c=0. | ¢

It is common to normalize the line equation vector
[ = (N, ny. d) = (12, d) with ||n2] = 1.

Observe: in this formulation 7 is the unit normal vector
perpendicular to the line and d is its distance to the origin

FEORGETOW:
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Lines

« Computing the intersection of 2 lines using homogeneous
coordinates

'.i‘. :!il HE-}

« Computing the line joining two points using homogeneous
coordinates

f:i"l K;i?i.
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3-D

Similar representations exist to model 3-D points: points in a

scene. |
r=(r,y,2) e R

& = (%,7,3,w) € P°

3-D planes specification using homogeneous coordinates

m = (a.b,e,d) A N
: “ - /”“H.fn'
Equation of plane / /-" “
T-m—=ar—+by+ez+d=>0 ~_ | m
Normalized ;;m
m = (M, Ny 1o, d) = (7o, d) with [|7n]] = 1 i/\']‘



Lines in 3-D

Not as easy to represent

One method: model line segment r
as convex combination of two points

on the line.
« Assume p and g are points on the
line.
e 0<1<1 T =up+ Aq

Homogeneous coordinates

3D line equation, » = (1 — A)p + Aq.
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Lines in 3-D

More generally, we can represent a
line in 3-D using a point and a
gradient

r=p+21d

d = [Ax, Ay, Az]
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2D Planar Transformations

— e . —
A /,_———— sunﬂ;ﬂ?;Q projective —
@:lﬂtinﬂ f--"’;__ﬁ".l ﬁ
> \ \
I'nl 'III ."ll

e — _-__'r- \ A I,-' P
Euclidean \— //ﬁ/fﬁlivm"

-
W _____—--""—_F 1
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Translations

* Here the augmented
vector x Is used to
account for
translation t

Translation. 2D translations can be writtenas &' = x + t or

m’:[f t | x

where I is the (2 x 2) identity matrix or

 Simply a shift L [ It } i
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Euclidean Transformations

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
= Rxr+tor

..E::[R t]:?: (2.16)
w here
B r:u.:rs.lfi' —sin# (2.17)
sinf!  cosf

is an orthonormal rotation matrix with RR" = I and |R| = 1.
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Scaled Rotations

Scaled rotation.  Also known as the similarity fransform, this transformation can be ex-
pressed as &' = sRa + t where s is an arbitrary scale factor. It can also be written as

—b
;B’:[SR t]:E:[ﬂ E]EE, (2.18)
b a i
where we no longer require that a® + b*> = 1. The similarity transform preserves angles
between lines.
GEORGETOWN(,

UNIVERSITY



Affine

Affine. The affine transformation is written as ®' = A&, where A is an arbitrary 2 x 3

matrix, Le.,
a a a
- 00 01 032 (2.19)
aip <411 419
Parallel lines remain parallel under affine transformations.
GEORGETOWIN_,

UNIVERSITY



Projective Transformation (Homography)

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

# = Hz, (2.20)

where H is an arbitrary 3 x 3 matrix. Note that H is homogeneous, ie., it is only defined
up to a scale, and that two H matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate & must be normalized in order to obtain an inhomogeneous result

T, Le.,
o — h-g[}:l‘ + hmy + hﬂg ; hm.‘l‘ —+ h.]_]_-y — h-lg

— and v = i
hogx + ho1y + hao Y hogx + hoty + hao

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-

(2.21)

formation).
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Properties of Transformations

Transformation Matrix # DolF  Preserves Icon
translation [ I | it ] 2 orientation
D3
rigid (Euclidean) [ R | t ] 3 lengths Q
2% 3
sinnilarity [:R t} 4  angles D
similarity g | - angles i/
affine [ A ] 6 parallelism [ e'
233 ]
projective { H ] 8 straight lines | ‘
3x3 T
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3D transformations

Translation. 3D translations can be writtenas &' = x +t or

m’:[f t]-.f
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3D Euclidean Transformation

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as ' = Rx + t or

-.n’:[R t]:ﬁ (2.24)

where R is a 3 x 3 orthonormal rotation matrix with RR' = T and 'R| = 1. Note that
sometimes it 1s more convenient to describe a rigid motion using

r = R(x —¢) = Rz — Re, (2.25)

where ¢ 1s the center of rotation (often the camera center).
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3D similarity transformation

Scaled rotation. The 3D similariry transform can be expressed as @' = sRax + f where s
15 an arbitrary scale factor. It can also be written as

z = [ SRt ]:E (2.26)

This transformation preserves angles between lines and planes.
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3D Affine Transformation

Affine. The affine transform is written as @' = A&, where A is an arbitrary 3 x 4 matrix,

Le.,

an0
L = @10

(20

Parallel lines and planes remain parallel under affine transformations.

an1
11
121

a2
12
(122

an3
213
(23

_Hl

(2.27)
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Projective Transformation

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

i = Hz, (2.28)

where H is an arbitrary 4 x 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate " must be normalized in order to obtain an inhomogeneous result . Perspective

transformations preserve straight lines (1.e., they remain straight after the transformation).
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3D Rotations

« Sequential Rotations Approach (Euler
Angle).
« Perform 3 sequential rotations around 3 cardinal
axes.

« Cons Al
» Result depends on order of rotations.
* Not always practical

« Axis / Angle Approach

« Rotation can be determined by 1 rotation axis
and 1 angle

' Rotation around an axis 71 by an angle 6.
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3D Axis/Angle Rotation

« Constructing the rotation matrix R,
given 1 and 6

R(#,0) = I 4+ sinf[f]x + (1 — cosf)[n]2

i = (fg, Ny, Tz ' Rotation around an axis 7. by an angle .

0 —Ty Ty
) = . 00—,
—Ty,  Tig 0
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Projecting from 3D to 2D

* Projections
« Orthographic and scaled orthographic (weak perspective) projection
« Para-perspective projection
* Perspective projection

* These projects are used often during image formation.

FEORGETOW:
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Modeling projection

The coordinate system

— We will use the pin-hole model as an approximation
— Put the optical center (Center Of Projection) at the origin
— Put the image plane (Projection Plane) in front of the COP
* Why?
— The camera looks down the negative z axis
« we need this if we want right-handed-coordinates

FEORGETOW:
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Orthographic projection

« Special case of perspective projection
— Distance from the COP to the PP is infinite (ignore z-axis)

— Good approximation for telephoto optics
— Also called “parallel projection™. (x,y, z) — (X, y)
— What’s the projection matrix?

|

OO
o rr O
o OO
= OO

FEORGETOW:
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Variants of orthographic projection

« Scaled orthographic
— Also called “weak perspective”

100 O ‘; x

010 O S =1 v |= (da,dy)

000 1/d]| | [1/d

 Affine projection
— Also called “para-perspective” L
a b ¢ d z
e f g h i
O 0 01 FEORGETOW,
L1 b o R A




Modeling projection

A

PP

(x.y', -d)

P

* Projection equations

— Compute intersection with PP of ray from (x,y,z) to COP

— Derived using similar triangles (Try this at Home!)
L Yy
(xaya Z) — (_dga _dga _d)

* We get the projection by throwing out the last coordinate:

(z,y,2) = (—d=~, —d2)
zZ Z
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Perspective Projection

« Projection is a matrix multiply using homogeneous coordinates:

R N 8

x
Y

| —z/d |

= (—dg,
y

LA

Z

divide by third coordinate

This i1s known as perspective projection
« The matrix is the projection matrix

« Can also formulate as a 4x4

O O 0 ]

1

01 0 O
00 1 0O
00 —1/d 0|

=N e 8

i

Y
z

| —z/d ]

= (—dg,
z

LA

Z

GEORGETOWIN_,
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Projection Review

* Reviewed
— Linear algebra and notation
— Projections

* Projections are used to model image formation and analysis

* To see where projections fit in, lets investigate camera models
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Camera Models

Jeremy Bolton, PhD
Assistant Teaching Professor
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Image formation

clect

———————
AN

« Let’'s design a camera
— ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?
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Pinhole camera

chject barrier
« Add a barrier to block off most of the rays
— This reduces blurring

— The opening known as the aperture
— How does this transform the image?

FEORGETOW:
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Camera Obscura: Pinhole model

* The first camera
— Known to Aristotle
— How does the aperture size affect the image?

* Pinhole model:
— Captures pencil of rays — all rays through a single point
— The point is called Center of Projection (focal point)

— The image is formed on the Image Plane

FEORGETOW:
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Shrinking the aperture

0.6mm 0.35 mm

* Why not make the aperture as small as possible?
« Less light gets through

« Diffraction effects...

FEORGETOW:
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Shrinking the aperture

().6mm 0.35 mm

LUZ

OPFTICA

fOTORUMAY &

N w——

0.15S mm 0.07 mm
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Conjunctiva
Iris

Cornea

Visual axis —__

Aqueous

Choroid

Sclera

The human eye Is a camera

— Ir1s - colored annulus with radial muscles

— Pupil - the hole (aperture) whose size is controlled by the iris
— What’s the “film”?

— photoreceptor cells (rods and cones) in the retina g EORGETOWN,

UNIVERSITY



Adding a lens

abject lens

* Alens focuses light onto the film
— Rays passing through the center are not deviated

EORGETOW:
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Adding a lens

object lens
i,

* Alens focuses light onto the film
— There Is a specific distance at which objects are “in

focus”
« other points project to a “circle of confusion” in the image

_ i is di EORGETOW.
Changing the shape of the lens changes this dlstancéjwwVERSITg\C

“circle of
confusion”
resulting in blur




Lenses

aperture

optical axis,\A /

focal point
optical center
(Center Of Projection)

 Alens focuses parallel rays onto a single focal
point
— focal point at a distance f beyond the plane of the lens
« fis a function of the shape and index of refraction of the lens

— Aperture of diameter D restricts the range of rays
- aperture may be on either side of the lens GEORGETOWIN_
— Lenses are typically spherical (easier to produce) UNIVERSITY



Thin lenses

Lens

b

i)

Thin lens equation; 1 1 1

— Any object point satisfying this equation is in focus
— What is the shape of the focus region?

— How can we change the focus region?
| o Jons GEORGETOWIN(,
— Thin lens applet. http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang ) UNIVERSITY



http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

Depth of field

f/2
« Changing the aperture size affects depth of field

— A smaller aperture increases the range in which the
object is approximately in focus

FEORGETOW:
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Projection within the context of camera model

 Given our camera model, lets revisit transformations
* Image plane vs. Virtual image plane

* Image Formation
— Translation projection: center the image coordinates
— Affine Projection: accounts for camera position and orientation
— Perspective Projection: image formation, 3d to 2d

FEORGETOW:
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Pinhole camera

T~

%

Image

I
\

Real

N

.
Pinhole

Camera

camera image
is inverted

Computer vision: models, learning and inference. 48

AOO2°011 <imnn | D Princaoa

image

b

Ray

Instead model impossible but more
convenient virtual image

Object 1n world

FEORGETOW:
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Pinhole camera terminology

|

Ray

Object

Optical in world

center : .
Optical axis

Principal
Y point
v
Image
plane

Computer vision: models, learning and inference.
AOO2°011 <imnn | D Princaoa

gy

N
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Deriving a Model for a Pinhole Camera

« We will first derive the pinhole camera model algebraically.

* Then we will revisit from a geometric perspective.

FEORGETOW:
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Camera parameters

 How can we model the geometry of a camera?

Camera

Two important coordinate systems: I
1. World coordinate system 7 “The World”

2. Camera coordinate system GEORGETOWN_
UNIVERSITY



Camera parameters

To project a point (x,y,z) in world coordinates into a camera
First transform (X,y,z) into camera coordinates

Need to know

— Camera position (in world coordinates)

— Camera orientation (in world coordinates)
The project into the image plane

— Need to know camera intrinsics

FEORGETOW:
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* Projection is a matrix multiplication using

Perspective Projection Matrix

homogeneous coordinates:

10
0 1
0 0

0
0
1/ f'

0
0
0

X

y
_z/f'

N < X

1

In practice: lots of coordinate transformations...

e N

2D
point
(3x1)

-

Camera to
pixel coord.
trans. matrix
(3x3)

\

-

AN

projection matrix

~(

Perspective

(3x4)

.

Observe: We can solve for
image coordinates in terms
of real-world coordinates
and transformation
parameters

X
— (2, )
VA VA
divide by the third
coordinate

~

World to
camera coord.
trans. matrix
(4x4)

3D
point
(4x1)

-~ GEORGETOWIN_,

UNIVERSITY



Perspective projection (Intrinsics)

 —f 0 0 1 0 0 0

0 —f 0 0 1 0 0

0 0 1][0 01 0
K (converts from 3D rays in camera

(intrinsics) coordinate system to pixel coordinates)

in general, K =

—f
0
0

S

—af
0

() : aspect ratio (1 unless pixels are not square)

Cy
Cy
1

(upper triangular
matrix)

S :skew (0 unless pixels are shaped like rhombi/parallelograms)

(C;c, Cy) : principal point ((0,0) unless optical axis doesn’t intersect projection

plane at origin)

FEORGETOW:
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Projection matrix (Extrinsics)

[~ (in homogeneous image coordinates)

|

FEORGETOW:
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Extrinsics

 How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right, y-
axis points up, z-axis points backwards)

Step 1: Translate by -¢
Yy

C
EORGETOW.
X W glﬂVIVERSITI'g\C



Extrinsics

 How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right, y-
axis points up, z-axis points backwards)

Step 1: Translate by -¢

How do we represent
translation as a matrix
multiplication?

"o | I3xs —c

0O 0 O 1
- g B \.JJ-‘L}GE TO W
k4 (WIVERSITYJ\C'




Extrinsics

 How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right, y-
axis points up, z-axis points backwards)

Step 1: Translate by -¢
Step 2: Rotate by R

Z \ _ u _
: u R = vl
T

« /LW

3x3 rotation matrix

FEORGETOW:
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Extrinsics

 How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right, y-
axis points up, z-axis points backwards)

y Step 1: Translate by -¢
Step 2: Rotate by R
Z _ u _
: 5 R = vl
WT
X GEORGETOWN_,

UNIVERSITY



Camera parameters

A camera is described by several parameters
e Translation t of the optical center from the origin of world coords
e Rotation R of the image plane

e focal length f, principle point (x’,, y’.),
e blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation o v ‘/
X
SX * * * %
Y ! X
X~|sy|=|*  * «|| ¥ |-PX y[ (vt 91

e The projection matrix models the cumulative effect of all parameters
e Useful to decompose into a series of operations

-f s X,
P3x4 — I<[R |t] — 0 — f ylc][R3x3 |t3xl]
0o 0 1
5 = IZE = K OT I3x3 0 R3x3 t3xl
e 0" 1]lo, 0] 0, 1
intrinsics rotation translation
e Note: The definitions of these parameters are not completely GEORGETOWIN_

standardized UNIVERSITY



Pinhole Camera Model

« Derive from a geometric perspective.

« Using Princes Notation.

FEORGETOW:
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Geometric interpretation of homogeneous coordinates

P/aoe
’ 2

<

4

Computer vision: models, learning and inference. &2 g%?%@?%

AOO2°011 <imnn | D Princaoa



Normalized Camera

w
o
1
- =g
& _______________________ [ - f— [ [ —
Optical Iy
center Ray Y
Image Y
plane
By similar triangles:
U (V)
r = — Yy = —
w

Computer vision: models, learning and inference. 63
AOO2°011 <imnn | D Princaoa
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Focal length parameters

a) w ) b) y ‘
Focal length Focal length
Field Field
of view of view
& < e 4
Optical Optical *
center | - Ray center ) Ray
Y
Image ‘v Image *v
plane plane
C) " d) y
Focal length Focal length
. e 4
Optical _i Optical i
center 1 center !
_] 7 Ray iy Ray
\ . ¥
Image *U Image v
plane plane
Computer vision: models, learning and inference. 64 I ANC

y UNIVERSITY
AOO2°011 <imnn | D Princaoa



Focal length parameters

Can model both
* the effect of the distance to the focal plane
* the density of the receptors
with a single focal length parameter f=d = ¢
Pu Pv

r = y =
w w

To be overly cumbersome note: In practice, the receptors may not be square:

(V)
I Pzt y = Pyv
w w

So use different focal length parameter for x and y dims

Computer vision: models, learning and inference. s g%?%%?}%
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Offset parameters

* Current model assumes that pixel (0,0) is where the principal ray
strikes the image plane (i.e. the center)

 Model offset to center

w
bev
— -0
Y 0 Y

Computer vision: models, learning and inference. ¢s g%?%%?}%
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Skew parameter

* Finally, add skew parameter

« Accounts for image plane being not exactly
perpendicular to the principal ray

OpU + YU

w
DV
Y
y = —— +0y
w
Computer vision: models, learning and inference. &7 g%?%%?}%
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Pinhole camera in
homogeneous coordinates

Camera model:

O, U+ YU
r = - 0.,
w
(beu?,} | N
y = —— T Oy,
w -
In homogeneous coordinates:
I - . - U
L oF Y 0, 0 "
AMyl=110 o, o, 0O " (linear!)
1 o 0 1 0
1L 111
Computer vision: models, learning and inference. s g%?%%?%
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Pinhole camera in
homogeneous coordinates

- - - - - U
L Pz Y Oz 0 D
Ayl =10 o, o, 0 0
1 O 0 1 0
- - - 411
Writing out these three equations
AT = QU+ YU 4 0w
AY = QU+ 0w
A= w.
Eliminate A to retrieve original equations
Computer vision: models, learning and inference. 69 g%?%%?%
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Position and orientation of camera

 Position w=(u,v,w)" of point in the world is generally not
expressed in the frame of reference of the camera.

« Transform using 3D transformation

- - _ - - - o
u Wir W12 W13 u Ty
/

v = W21 W22 W23 V| T+ | Ty
!/

W (W31 W32 W33 | [W] | T2 |

or

Point in frame of Point in frame of
reference of camera reference of world
Computer vision: models, learning and inference. 70 g%?%%?%
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Complete pinhole camera model

O (W18 + W12V + WisW + T) + V(Wo1U + Wao¥ + wasw +T,)

— + 0,
W31 U + W32V + W33W + Tz
_ Oylemutwmutonwtn)
W31U + W32V 4 Wa3W + T v
 Intrinsic parameters (stored as Intrinsic
matrix) by Y O
{@;1:; Dy Vs O O’y} A=10 o, o
0 0 1
« Extrinsic parameters
182, 7}
Computer vision: models, learning and inference. 71 g%?%%?%
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At the end of the day...

Scene geometry consists of internal and external parameters
Observed light is focused onto an image plane
The image Is then captured (Image Acquisition)

But first we will review radiometry: physics of LIGHT and COLOR
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