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Overview

• Linear Algebra Review
• Homogeneous vs non-homogeneous representations

• Projections and Transformations

• Scene Geometry

• The pinhole projection model
– Qualitative properties

– Perspective projection matrix

• Cameras with lenses
– Depth of focus

– Field of view

– Lens aberrations



• Readings

– Szeliski 2.1

Scene Geometry, Projection, and Perspective



Projection

• Readings

– Szeliski 2.1



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction (3D to 2D)

3D world 2D image

What have we lost?
• Angles

• Distances (lengths)
Slide by A. Efros



Linear Algebra and Projections

• Before we dive into camera geometry, lets introduce some 

notation and review linear algebra.

• 2-D points will be used to represent pixel coordinates: points in a 

(image) plane. (non-homogeneous) 



Homogeneous and Non-homogeneous Vectors

• 2-D points can be represented by a vector and a weight.

• Homogeneous

• P2 is the 2-d projective space



Why Homogeneous Coordinates?

• Homogeneous representation permits linear matrix 
operations for transformations used in Computer Vision

How?  add one more coordinate:

homogeneous image 

coordinates

homogeneous scene 

coordinates

Converting from homogeneous coordinates



Lines

• 2-D Lines can also be represented using homogeneous 

coordinates

• Corresponding line equation 

• It is common to normalize the line equation vector

• Observe: in this formulation  𝑛 is the unit normal vector 

perpendicular to the line and d is its distance to the origin 



Lines

• Computing the intersection of 2 lines using homogeneous 

coordinates

• Computing the line joining two points using homogeneous 

coordinates



3-D

• Similar representations exist to model 3-D points: points in a 

scene.

• 3-D planes specification using homogeneous coordinates

• Equation of plane

• Normalized



Lines in 3-D

• Not as easy to represent

• One method: model line segment r 

as convex combination of two points 

on the line. 

• Assume p and q are points on the 

line.

• 0 ≤ 𝜆 ≤ 1

• Homogeneous coordinates



Lines in 3-D

• More generally, we can represent a 

line in 3-D using a point and a 

gradient

𝑟 = 𝑝 + 𝜆  𝑑

 𝑑 = [Δ𝑥, Δ𝑦, Δ𝑧]



2D Planar Transformations



Translations

• Here the augmented 

vector  𝑥 is used to 

account for 

translation t

• Simply a shift 



Euclidean Transformations



Scaled Rotations



Affine



Projective Transformation (Homography)



Properties of Transformations



3D transformations



3D Euclidean Transformation



3D similarity transformation



3D Affine Transformation



Projective Transformation



3D Rotations

• Sequential Rotations Approach (Euler 

Angle).

• Perform 3 sequential rotations around 3 cardinal 

axes.

• Cons

• Result depends on order of rotations.

• Not always practical

• Axis / Angle Approach

• Rotation can be determined by 1 rotation axis 

and 1 angle



3D Axis/Angle Rotation

• Constructing the rotation matrix R, 

given  𝑛 and 𝜃



Projecting from 3D to 2D

• Projections

• Orthographic and scaled orthographic (weak perspective) projection

• Para-perspective projection

• Perspective projection

• These projects are used often during image formation.



Modeling projection

• The coordinate system
– We will use the pin-hole model as an approximation

– Put the optical center (Center Of Projection) at the origin

– Put the image plane (Projection Plane) in front of the COP

• Why?

– The camera looks down the negative z axis

• we need this if we want right-handed-coordinates

–



Orthographic projection

• Special case of perspective projection
– Distance from the COP to the PP is infinite (ignore z-axis)

– Good approximation for telephoto optics

– Also called “parallel projection”:  (x, y, z) → (x, y)

– What’s the projection matrix?

Image World



Variants of orthographic projection

• Scaled orthographic
– Also called “weak perspective”

• Affine projection
– Also called “para-perspective”



Modeling projection

• Projection equations
– Compute intersection with PP of ray from (x,y,z) to COP

– Derived using similar triangles (Try this at Home!)

• We get the projection by throwing out the last coordinate:



Perspective Projection
• Projection is a matrix multiply using homogeneous coordinates:

divide by third coordinate

This is known as perspective projection

• The matrix is the projection matrix

• Can also formulate as a 4x4 

divide by fourth coordinate



Projection Review

• Reviewed

– Linear algebra and notation

– Projections

• Projections are used to model image formation and analysis

• To see where projections fit in, lets investigate camera models



Camera Models
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Image formation

• Let’s design a camera
– Idea 1:  put a piece of film in front of an object

– Do we get a reasonable image?



Pinhole camera

• Add a barrier to block off most of the rays

– This reduces blurring

– The opening known as the aperture

– How does this transform the image?



Camera Obscura: Pinhole model

• The first camera
– Known to Aristotle

– How does the aperture size affect the image?

• Pinhole model:
– Captures pencil of rays – all rays through a single point

– The point is called Center of Projection (focal point)

– The image is formed on the Image Plane



Shrinking the aperture

• Why not make the aperture as small as possible?
• Less light gets through

• Diffraction effects...



Shrinking the aperture



The eye

• The human eye is a camera
– Iris - colored annulus with radial muscles

– Pupil - the hole (aperture) whose size is controlled by the iris

– What’s the “film”?

– photoreceptor cells (rods and cones) in the retina



Adding a lens

• A lens focuses light onto the film

– Rays passing through the center are not deviated

Slide by Steve Seitz



Adding a lens

• A lens focuses light onto the film

– There is a specific distance at which objects are “in 

focus”

• other points project to a “circle of confusion” in the image

– Changing the shape of the lens changes this distance

“circle of 

confusion” 

resulting in blur



Lenses

• A lens focuses parallel rays onto a single focal 
point
– focal point at a distance f beyond the plane of the lens

• f is a function of the shape and index of refraction of the lens

– Aperture of diameter D restricts the range of rays
• aperture may be on either side of the lens

– Lenses are typically spherical (easier to produce)

focal point

F

optical center

(Center Of Projection)



Thin lenses

• Thin lens equation:

– Any object point satisfying this equation is in focus

– What is the shape of the focus region?

– How can we change the focus region?

– Thin lens applet:  http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang )

http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html


Depth of field

• Changing the aperture size affects depth of field
– A smaller aperture increases the range in which the 

object is approximately in focus

f / 5.6

f / 32

http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f32.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f32.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f5.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f5.jpg


Projection within the context of camera model

• Given our camera model, lets revisit transformations

• Image plane vs. Virtual image plane

• Image Formation

– Translation projection: center the image coordinates

– Affine Projection: accounts for camera position and orientation 

– Perspective Projection: image formation, 3d to 2d



Pinhole camera

48Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

Real camera image 
is inverted

Instead model impossible but more 
convenient virtual image



Pinhole camera terminology

49Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince



Deriving a Model for a Pinhole Camera

• We will first derive the pinhole camera model algebraically.

• Then we will revisit from a geometric perspective. 



Camera parameters

• How can we model the geometry of a camera?

“The World”

Camera

x

y

z

v

w

u

o

COP

Two important coordinate systems:
1. World coordinate system
2. Camera coordinate system



Camera parameters

• To project a point (x,y,z) in world coordinates into a camera

• First transform (x,y,z) into camera coordinates

• Need to know

– Camera position (in world coordinates)

– Camera orientation (in world coordinates)

• The project into the image plane

– Need to know camera intrinsics



divide by the third 
coordinate

Perspective Projection Matrix

• Projection is a matrix multiplication using 

homogeneous coordinates:
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In practice: lots of coordinate transformations…

World to 
camera coord. 
trans. matrix

(4x4)

Perspective
projection matrix

(3x4)

Camera to 
pixel coord. 

trans. matrix 
(3x3)

=
2D

point
(3x1)

3D
point
(4x1)

Observe: We can solve for 
image coordinates in terms 
of real-world coordinates 

and transformation 
parameters



Perspective projection (Intrinsics)

(intrinsics)

in general, 

: aspect ratio (1 unless pixels are not square)

: skew (0 unless pixels are shaped like rhombi/parallelograms)

: principal point ((0,0) unless optical axis doesn’t intersect projection 
plane at origin)

(upper triangular 
matrix)

(converts from 3D rays in camera 
coordinate system to pixel coordinates)



Projection matrix (Extrinsics)

0

=

(in homogeneous image coordinates)

𝑷𝒒



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points right, y-

axis points up, z-axis points backwards)

0

Step 1: Translate by -c



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points right, y-

axis points up, z-axis points backwards)

0

Step 1: Translate by -c

How do we represent 
translation as a matrix 
multiplication?



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points right, y-

axis points up, z-axis points backwards)

0

Step 1: Translate by -c
Step 2: Rotate by R

3x3 rotation matrix



Extrinsics

• How do we get the camera to “canonical form”?

– (Center of projection at the origin, x-axis points right, y-

axis points up, z-axis points backwards)

0

Step 1: Translate by -c
Step 2: Rotate by R



Projection equation

• The projection matrix models the cumulative effect of all parameters

• Useful to decompose into a series of operations
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Camera parameters
A camera is described by several parameters

• Translation t of the optical center from the origin of world coords

• Rotation R of the image plane

• focal length f, principle point (x’c, y’c), 

• blue parameters are called “extrinsics,”  red are “intrinsics”

• Note: The definitions of these parameters are not completely 
standardized



Pinhole Camera Model 

• Derive from a geometric perspective.

• Using Princes Notation.



Geometric interpretation of homogeneous coordinates

62Computer vision: models, learning and inference.  
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Normalized Camera

63Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

By similar triangles:



Focal length parameters

64Computer vision: models, learning and inference.  
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Can model both
• the effect of the distance to the focal plane
• the density of the receptors

with a single focal length parameter f = d = f

To be overly cumbersome note: In practice, the receptors may not be square:

So use different focal length parameter for x and y dims 

Focal length parameters

65Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince



Offset parameters

66Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

• Current model assumes that pixel (0,0) is where the principal ray 

strikes the image plane (i.e. the center)

• Model offset to center 



• Finally, add skew parameter

• Accounts for image plane being not exactly 

perpendicular to the principal ray

Skew parameter

67Computer vision: models, learning and inference.  
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Pinhole camera in 
homogeneous coordinates

68Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

Camera model:

In homogeneous coordinates:

(linear!)



Pinhole camera in 
homogeneous coordinates

69Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

Writing out these three equations

Eliminate l to retrieve original equations



• Position w=(u,v,w)T of point in the world is generally not 

expressed in the frame of reference of the camera.

• Transform using 3D transformation

or 

Position and orientation of camera

70Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince

Point in frame of 
reference of camera

Point in frame of 
reference of world



• Intrinsic parameters                       (stored as intrinsic 

matrix)

• Extrinsic parameters

Complete pinhole camera model

71Computer vision: models, learning and inference.  
©2011 Simon J.D. Prince



At the end of the day…

• Scene geometry consists of internal and external parameters

• Observed light is focused onto an image plane

• The image is then captured (Image Acquisition)

• But first we will review radiometry: physics of LIGHT and COLOR


