

COSC579: Computer Vision

Jeremy Bolton, PhD Assistant Teaching Professor

A very special thanks to those who have contributed to this area of research over the years. Some slides used are from their research and efforts: the following professor and researchers Yung-Yu Chuang, Fredo Durand, Alexei Efros, William Freeman, James Hays, Svetlana Lazebnik, Andrej Karpathy, Fei-Fei Li, Srinivasa Narasimhan, Silvio Savarese, Steve Seitz, Noah Snavely, Richard Szeliski, and Li Zhang.

Outline

- I. Welcome!
- II. Course Overview and Administration
- III. Topics and Goals
- IV. Fun Examples

Welcome!

COSC-579: Computer Vision

Instructor: Jeremy Bolton, Ph.D. Assistant Teaching Professor Department of Computer Science Email: jeremy.bolton@georgetown.edu

Office Hours: Daily hours will be entered on Canvas calendar (or by appointment)

TAs: TBD (see Canvas calendar for office hours)

Course Summary

- **Course Description:** This course provides a comprehensive introduction to computer vision including image acquisition, low-level vision, and high-level vision. Image acquisition topics may include camera geometry, radiometry, illumination, noise, stereopsis, and affine transformations. Low-level vision topics may include, convolution, Fourier Transform, filters, operators, and feature generation. High-level vision topics may include detection, classification, segmentation, spatial relations, spatio-temporal models, object tracking, deformable models, and graph-based models.
- **Required Prerequisites:** Mathematical Statistics and Linear Algebra
- Some existing knowledge of Machine Learning and Image Processing is preferable, but a brief review will be provided.

TEXTS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

🙆 Springer

SIMON J. D. PRINCE

MODELS, LEARNING,

- Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010
 - http://szeliski.org/Book/
- Prince, Computer Vision: Models, Learning, and Inference, Cambridge, 2012
 - www.computervisionmodels.com
- Goodfellow, Bengio and Courville, Deep Learning, MIT Press, 2016.
 - http://www.deeplearningbook.org
- Nielsen, Neural Networks and Deep Learning, 2015.
 - <u>http://neuralnetworksanddeeplearning.com/</u>
- Horn, Berthold K.P. Robot Vision. The MIT Press, 1986.

Other References

- Forsyth and Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2011.
- Bishop, Pattern Recognition and Machine Learning, Springer 2006.
- Vapnik, Statistical Learning Theory, Wiley, 2006.
- Duda, Hart, Stork, Pattern Classification, 2nd edition, Wiley, 2000.

Course Website

• Link can also be found on Canvas or my department page.

http://jeremybolton.georgetown.domains/courses/cv/

Exercises and Final Project

• Exercises

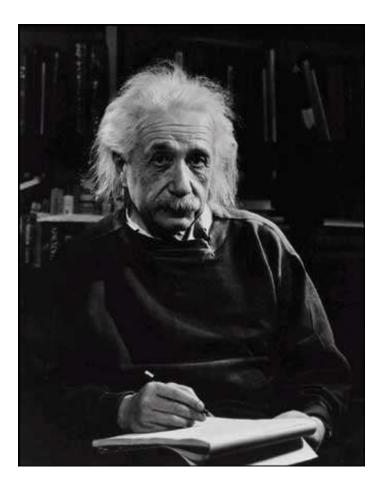
- Theory (math and stats) and Application (coding).

- Final Project: Implement Computer Vision Solution
 - Report
 - Presentation

Notes about Coding

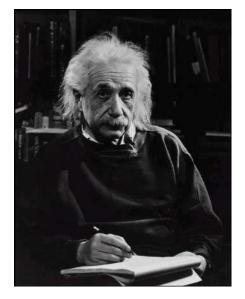
- Recommended Languages: Matlab or Python
 - Request approval for use of another language.
- Coding Exercises are an integral part of this course! It is assumed that you have a proficient understanding of a programming language. Students are responsible for learning and/or reviewing, as needed, the programming language chosen.
- Matlab and Python have many packages which perform Computer Vision tasks. Depending on the exercise, you may or may not be permitted to use these built-ins (pre-existing code). Details will be provided in exercise instructions. If you have any questions about a built-in, simply ask.
- Cheating will not be tolerated. Any form of cheating will be reported to the GU honor council. Please read the following guidelines for project submissions:
 - Discussion among students pertaining to project content and general methodology is encouraged; however, students are NOT PERMITTED to share code, copy code, or use code composed by others.
 - A student may be asked to present, demonstrate, or explain a project submission at any time, without notice. At my sole discretion, a student's project grade can be adjusted based on this presentation, demonstration, and/or explanation. If a student does not sufficiently understand or explain their submission, further action may be taken.
 - Due Dates will be posted in Canvas or announced in class.

A Picture is Worth 100 Words

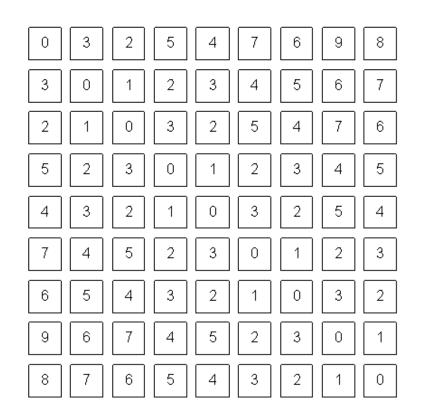


A Picture is Worth 10,000 Words

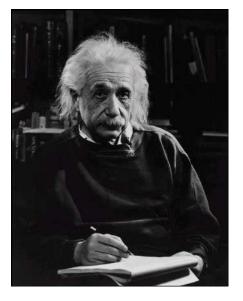
A Picture is Worth a Million Words

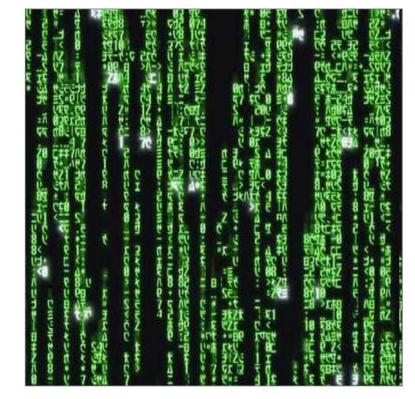


Human Vision


- Can do amazing things like:
 - Recognize people and objects
 - Navigate through obstacles
 - Understand mood in the scene
 - Imagine stories
- But still is not perfect:
 - Suffers from Illusions
 - Ignores many details
 - Ambiguous description of the world
 - Doesn't care about accuracy of world

Computer Vision


What we see

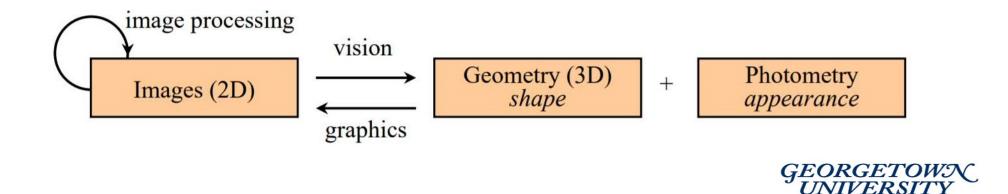

What a computer sees

Computer Vision

What we see

What a computer sees

What is computer vision?



Terminator 2

What is Computer Vision?

- Computer Vision
 - Inverse problem: Hard
 - Image Processing
- Graphics
 - Forward problem

What is Computer Vision?

- Inverse Optics
- Intelligent interpretation of Imagery
- Building a Visual Cortex
- No matter what your definition is...
 - Vision is hard.
 - But is fun...

Components of a Computer Vision System

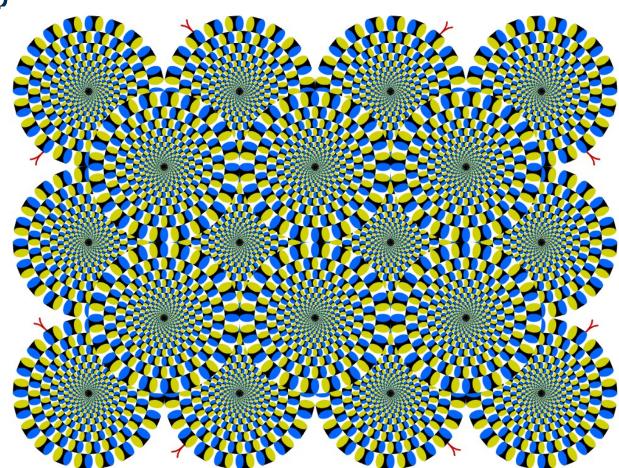
Every picture tells a story

 Goal of computer vision is to write computer programs that can interpret images

Can computers match (or beat) human vision?

- Yes and no (but mostly no!)
 - humans are much better at "hard" things
 - computers can be better at "easy" things

Human perception has its shortcomings...



Sinha and Poggio, Nature, 1996

Is this image in motion?

- Look at the image as a whole. Are the wheels in motion?
- Now focus on one wheel in particular.
 Is that one in motion?

Copyright A.Kitaoka 2003

Some Topics in Computer Vision

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

4YCH428 4YCH428 4YCH428

Digit recognition, AT&T labs http://www.research.att.com/~yann/

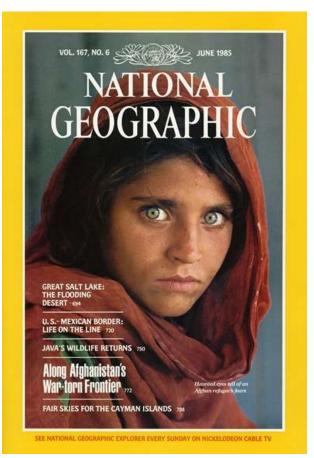
License plate readers http://en.wikipedia.org/wiki/Automatic number plate recognition

Face detection

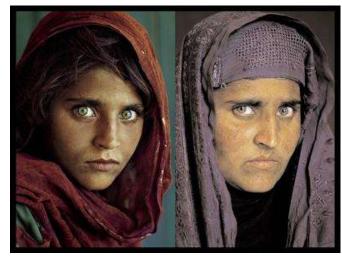
Many new digital cameras now detect faces
 – Canon, Sony, Fuji, …

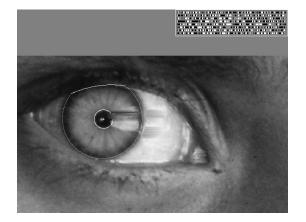
Smile detection?

The Smile Shutter flow


Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot[®] T70 Digital Still Camera


Face recognition


Who is she?

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely <u>http://www.sensiblevision.com/</u>

Object recognition (in mobile phones)

- This is becoming real:
 - Lincoln Microsoft Research
 - Point & Find, Nokia
 - <u>https://www.google.com/intl/en_us/insidesearch/fe</u> <u>atures/images/searchbyimage.html</u>
 GEORGETOWS UNIVERSITY

Shape and Morphology: Deformable Models

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Slide content courtesy of Amnon Shashua $Smart\ cars$

- Mobileye
 - Vision systems currently in high-end BMW, GM, Volvo models
 - By 2010: 70% of car manufacturers.
 - Video demo

Vision in space

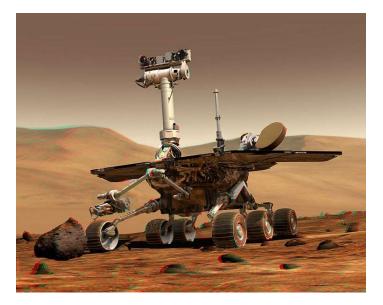
NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- Obstacle detection, positive of the set of

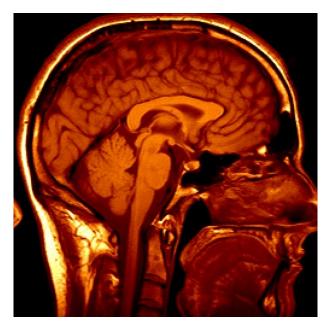
Delivery Robots: Starship Technologies and more

Computer Vision will transform the delivery industry



GEORGETOWN UNIVERSITY

Robotics


NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical imaging

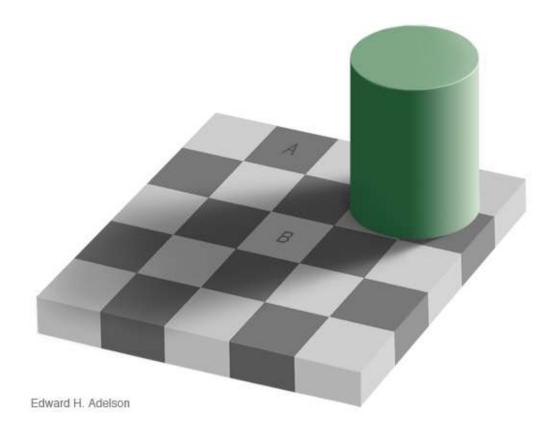
3D imaging MRI, CT

Image guided surgery <u>Grimson et al., MIT</u>

Other Computer Vision Applications

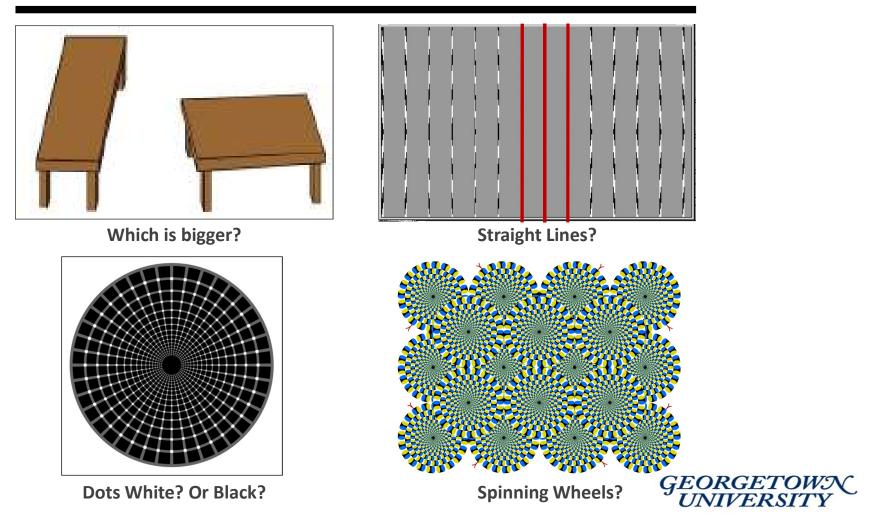
- Some industrial applications of computer vision:
 - automotive monitoring, car counting http://www.mobileye.com/;
 - https://youtu.be/Y3ac5rFMNZ0?t=283
 - Surveillance. Fight, Flight Detection / Target Tracking
 - <u>https://youtu.be/QcCjmWwEUgg</u>
 - https://youtu.be/InqV34BcheM
 - Sports Data: https://www.secondspectrum.com/
 - Morphing:
 - https://youtu.be/pqpS6BN0_7k
 - <u>https://youtu.be/nUDIoN- Hxs</u>

Current state of the art

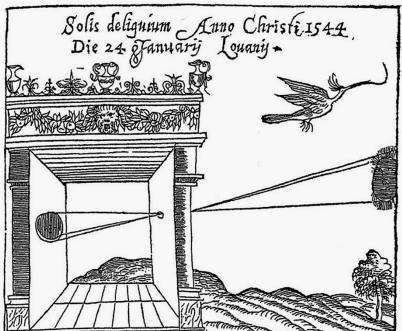

- You just saw examples of current applications.
 - Many of these are less than 5 years old
- This is a very active research area, and rapidly changing
 Many new apps in the next 5 years
- To learn more about vision applications and companies
 - David Lowe maintains an excellent overview of vision companies
 - <u>http://www.cs.ubc.ca/spider/lowe/vision.html</u>

Topics covered

Lightness and Perception

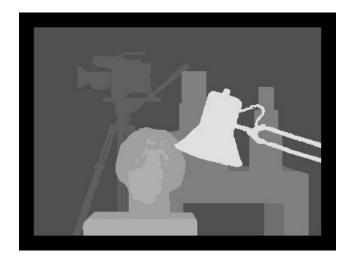


Surface Reflectance


Human Vision: Optical Illusions

Cameras and their Optics

Today's Digital Cameras



The Camera Obscura

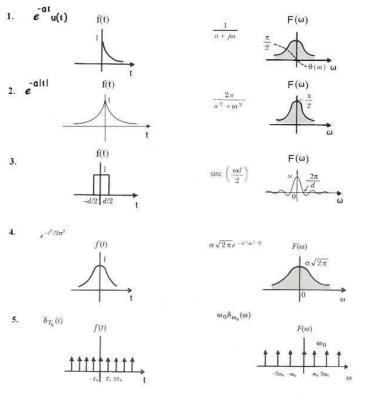

Binocular Stereo

Image Processing

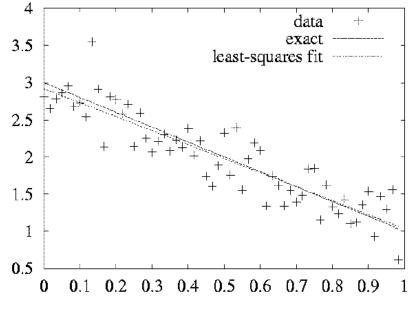

Fourier Transform Sampling, Convolution

Image enhancement Feature detection

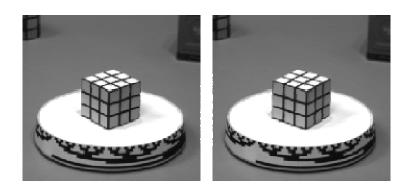
Statistical Techniques

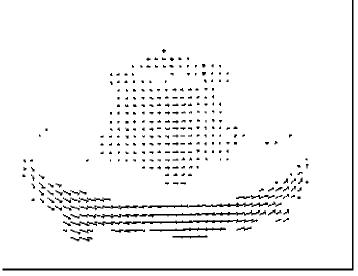
Least Squares Fitting

Face detection

Face Recognition

- Principle Components Analysis (PCA)
- Face Recognition




Tracking

Optical Flow

Some Recent Trends in Vision

GEORGETOWN UNIVERSITY

Computer Vision ... the journey

- Attaining scene understanding is a long journey
- Our course will largely develop these concepts in their intuitive order

Appendix

