
Project 4 November 9, 2108

COSC 051 Fall 2018 Page 1 of 9

Claude's Custom Counters, Inc. – Object Oriented Version

Background
Having a menu of options and the capability to load bulk data from files are features of our system that were very

well received. Now our corporate executives want to see an object-oriented version. There will not be much

difference to actually see, but we are going to modify much of how the software works internally. The menu, file

format, data validation, and most of the Project #3 features are unchanged. How these features are implemented

is significantly changed.

Software Requirements Overview

We will be adding object-oriented features to the software. Specifically, we shall define a CounterTop class that

encapsulates the data and operations applicable to one of Claude's custom countertops manufactured for delivery

to a customer. The complete class declaration is provided on Canvas for download. In-line implementation code is

provided for several member functions. You may use this code as your own. Your CounterTop class must have all

data members shown in the class declaration. You must also include all of the member functions shown. You may

add member functions if they enhance your software. Any such additions must not supersede the intent and/or

functionality of required member functions. Data members may not be added. If desired, you may rename data

members to match your naming conventions from Project #3. However, you may find it is actually easier not to do

so. For class methods, you may use different parameter names, but the number of parameters, their data type(s),

and their order in the parameter lists must not be changed. You may not change the identifiers of any class

methods. You may not change the return type of any class methods.

The function to clear data from all of the vectors has been removed from the project. It was marginally useful in

Project #3, but does not add much to this project. We shall keep the menu option to clear the vector, but just call

our one vector's clear method from main if that option is selected. All other "stand-alone" functions from

Project #3 are still required for this project. We shall replace the seven vectors from last project with a single

vector. This greatly simplifies the parameter lists for our "stand-alone" functions. The function to display the

menu should require no modifications. All of the other functions will need to be changed. Think carefully about

the design of your changes before starting to write code. Some modifications may be significant, but with a

reasonable amount of prior planning, most changes should be relatively modest or largely copy-and-paste from

Project #3.

File Processing

The file format is unchanged from Project #3. We will not know how many total records are in the file. Your

software shall continue reading and processing lines of data until reaching the end of the input file. After reading

each line of data from the file, the software shall perform the same error checking as it did in Project #3. If errors

exist, that row of data is simply skipped and none of the values shall be loaded into memory (appended to the

vector). Selected values of rows having errors shall still be output to the terminal window followed by a brief

notice explaining the error(s) and the file processing shall continue. If there are no errors, the software shall use

the data from that row to set the value of each data member of a CounterTop object. Then that CounterTop

object shall be appended to a vector of CounterTop objects. As was the case before, all of the values on each row

of the data file must be read even if they are not used in calculations or output. After the detailed data for each

row and the summary information have been output the menu shall again be displayed along with a prompt for

the user to enter their next option.

Project 4 November 9, 2108

COSC 051 Fall 2018 Page 2 of 9

Data Validation (no change from previous projects)

Calculations
The actual calculations are unchanged from Project #3. However, where and when these calculations are made is

significantly different. In this project, we shall provide CounterTop objects the capability to calculate their own

area, raw materials required for fabrication, and cost information. Depending upon your design for Project #3, you

may have had duplicate code to make those calculations in multiple functions (I did). Now we shall remove this

duplicate code from all of the "stand-alone" functions and encapsulate it within the CounterTop class declaration

along with the data necessary for the calculations to be made.

Functions
As before, all code that does "real work" will be in user-defined functions and not part of function main. Function

prototypes for required functions are shown below. The purpose of each Project #4 function is essentially the

same as the corresponding function in Project #3. Beneath each function prototype is an abbreviated description

of the function's purpose. Tasks that are unchanged from Project #3 are not repeated. Only changes, additions,

and/or deletions from tasks the function must perform are highlighted. Functions that require data from the input

files should not be called unless at least one file has been successfully loaded.

 This function has no parameters and returns a single character. Its purpose is unchanged from Project #3.

The parameters for this function are the input data file name and path, a boolean variable to store true if the file is

successfully loaded, and a vector to store one CounterTop object for each error-free line of input data. You may

use the parameter identifiers shown, or change them if you prefer other parameter names. You may NOT change

the function identifier or add/delete parameters. The initial steps of file processing and data validation are

unchanged from Project #3 except that data are no longer appended to parallel vectors. If a row of data passes all

validation checks, then values from that row shall be used to initialize or update the data members of a

CounterTop object. Then that CounterTop object shall be appended to the end of the vector parameter.

Maintain counters to keep track of how many rows have errors and how many rows are error-free. Output those

counts after all rows of data have been processed and displayed. No other calculations are done within this

function. If data from the file are successfully loaded, then the boolean parameter shall be set to true. To decide if

the file data were successfully loaded, you can simply test to see if the size of the vector has increased. This is not

a very rigorous test, but it is sufficient for our purposes in this project.

char displayMenu();

void uploadFile(string fName, bool &loadSuccess, vector<CounterTop> &vCounterTops);

Project 4 November 9, 2108

COSC 051 Fall 2018 Page 3 of 9

The parameter for this function is a vector of CounterTop objects. You may use the parameter identifier shown,

or change it if you prefer another parameter name. You may NOT change the function identifier or add/delete

parameters. The purpose of this function is to display a detailed listing of file data and calculated data. The format

and content of the output is the same as Project #3. Any code that calculated area, materials required, and costing

data must be removed. Invoke the appropriate member function(s) of the CounterTop class for any calculated

values that are output. Test for valid data are not required, because only valid rows of data are appended to the

vector.

The parameter for this function is a vector of CounterTop objects. You may use the parameter identifier shown,

or change it if you prefer another parameter name. You may NOT change the function identifier or add/delete

parameters. The purpose of this function is unchanged from Project #3. Any code that calculated area, materials

required, and costing data must be removed. Invoke the appropriate member function(s) of the CounterTop class

for any calculated values that are output. Test for valid data are not required, because only valid rows of data are

appended to the vector.

The parameter for this function is a vector of CounterTop objects. You may use the parameter identifier shown,

or change it if you prefer another parameter name. You may NOT change the function identifier or add/delete

parameters. The purpose of this function is unchanged from Project #3. Any code that calculated area, materials

required, and costing data must be removed. Invoke the appropriate member function(s) of the CounterTop class

for any calculated values that are output. Test for valid data are not required, because only valid rows of data are

appended to the vector.

The parameter for this function is a vector of CounterTop objects. You may use the parameter identifier shown,

or change it if you prefer another parameter name. You may NOT change the function identifier or add/delete

parameters. The purpose of this function is unchanged from Project #3. Any code that calculated area, materials

required, and costing data must be removed. Invoke the appropriate member function(s) of the CounterTop class

for any calculated values that are output. Test for valid data are not required, because only valid rows of data are

appended to the vector.

void allDetails(const vector<CounterTop> &vCounterTops);

void orderDetails(const vector<CounterTop> &vCounterTops);

void summaryByStone(const vector<CounterTop> &vCounterTops);

void summaryByRegion(const vector<CounterTop> &vCounterTops);

Project 4 November 9, 2108

COSC 051 Fall 2018 Page 4 of 9

Class CounterTop declaration
The complete class declaration is
provided on Canvas. You may (and
should) copy the declaration exactly as
it is and use the code as your own
without attribution. To the right is a
portion of the code from the class
declaration and comments about
some of the key class members.

The class has a default constructor, a
constructor with parameters, and a
copy constructor. The default
constructor should set all data
members to default values such as
zero for numeric data members, an
empty string for string data members,
etc. The constructor with parameters
shall initialize all data members to the
value passed to the corresponding
parameter. The copy constructor shall
initialize all data members to the same
values stored in the existing
CounterTop object passed to its
parameter.

Many of the member functions for
this class are simple accessor and mutator functions that are implemented in-line. The in-line implementation
code is provided as part of the class declaration.

Member functions that are more involved and/or will require more than one statement must be implemented
outside of the class declaration. Below is a brief explanation of the purpose of those functions.

 void setOrderDate(int yyyy, int mm, int dd);

This function updates all components of the order date.

 void setDeliveryDate(int yyyy, int mm, int dd);

This function updates all components of the delivery date.

 double getCounterTopArea() const;

This function calculates the area of the counter top to be manufactured. It makes use of the dimension values
stored in the object's data members and returns the calculated value.

 double getMaterialRequired() const;

This function calculates the material required to begin manufacturing. It should call the function above that
calculates the counter top area and use that value along with the 26% wastage factor to calculate the quantity
required. The final result is returned to the calling function.

class CounterTop

{

 //overloaded stream insertion and extraction operators

 friend ostream& operator<<(ostream &os, const CounterTop &rhsObj);

 friend istream& operator>>(istream &is, CounterTop &rhsObj);

private:

 //the data members below are required (you may change identifiers)

 //there is no need for additional data members

 int orderYear, orderMonth, orderDay;

 int deliveryYear, deliveryMonth, deliveryDay;

 char stoneCode;

 double length;

 double depth;

 double height;

 int lengthEdgesToFinish;

 int depthEdgesToFinish;

 string orderNumber;

 string region;

 string fipsStateCode;

 string customerNameAddress;

public:

 //overloaded assignment operator

 CounterTop& operator=(const CounterTop &rhsObj);

 //all member functions for this class are public

 //see provided code for all other member function prototypes

 //you may NOT change member function

 //identifiers or add/delete parameters

}; //END declaration class CounterTop

Project 4 November 9, 2108

COSC 051 Fall 2018 Page 5 of 9

 double getStoneCost() const;

This function calculates the cost of stone for the counter top to be manufactured. It must use the value of the
object's stone code data member to determine the cost per square foot. Then it must call the function that
calculates material required to begin fabrication. Using those values the function calculates its final result and
returns that value to the calling function.

 double getFinishingCost() const;

The function above uses the object's data members that store length edges to be finished, depth edges to be
finished, length, depth, and the finishing cost value to calculate the finishing cost for a counter top (the latter value
(finishing cost) should be a global constant). That calculated value is returned to the calling function.

 double getTotalCost() const;

This function calls the function that calculates stone cost, as well as, the function that calculates finishing cost.
Those two values are added together and returned as the total cost.

friend ostream& operator<<(ostream &os, const CounterTop &rhsObj);

This function is the overloaded stream insertion operator for the CounterTop class. In lecture we will discuss the
motivation for operator overloading in user defined classes. For this project, the overloaded stream insertion
operator must be used in the allDetails function and in the orderDetails function. Passing a CounterTop object
as the right hand side operand to the overloaded stream insertion operator results in its data members and/or
calculated values (calculated via calls to its member functions) being output in the exact format as is currently
displayed in those two functions.

friend istream& operator>>(istream &is, CounterTop &rhsObj);

This function is the overloaded stream extraction operator for the CounterTop class. In lecture we will discuss the
motivation for operator overloading in user defined classes. Passing a CounterTop object as the right hand side
operand to the overloaded stream extraction operator results in its data members being updated with values
extracted from the stream object that is the left hand side operand. For this project, the overloaded stream
extraction operator must be implemented and tested. However, you are not required to use the operator if it is
not convenient for your specific project design.

You may not add data members to the class declaration. The data members available in the class should be
sufficient for everything a CounterTop object requires. You may not change member function identifiers or
add/delete parameters. You do have the option to add more member functions. However, no added member
functions are allowed to replace functionality of the required member functions. If you add a member function it
must remain consistent with the overall project intent and should enhance your program design. Below is an
example of an optional function that I added to my program.

 string getStoneName() const;

This function uses the object's stone code data member. The function "translates" that value into an actual stone
name. In my program, I would call this function any time I needed to output a descriptive name instead of just the
single character code for a CounterTop object.

Project 4 November 9, 2108

COSC 051 Fall 2018 Page 6 of 9

Academic Integrity
This is an individual project and all work must be your own. Refer to the guidelines specified in the Academic

Honesty section of this course syllabus or contact me if you have any questions.

Include the following comments at the start of your source code file:

These comments must appear exactly as shown above. The only difference will be values that you replace where
there are "place holders" within angle brackets such as <your netID> which should be replaced by your own netID
and the angle brackets removed.

Submission Details
Upload to Canvas a .cpp file containing your C++ program. In general, requests for extensions will not be

considered. Late submissions will be penalized 2.5 points for each 15 minutes after the due date. Files submitted

more than 10 hours late will receive a score of zero. Do not post your executable file. You should ensure that your

source file compiles on the cs-class server and that the executable file runs and produces the correct output on

the cs-class server. Use main.cpp as the name for your source code file.

Programming Skills

The programming skills required to complete this assignment include:

 Screen output (cout)

 Keyboard input (cin)

 Basic data validation

 Basic output formatting

 Basic calculations

 Control structures for repetition

 Advanced output formatting

 Control structures for repetition

 Advanced output formatting

 Tabulated output

 Advanced data validation

 Menu driven programs

 Vectors

 Functions

 Object Oriented Programming

 Operator Overloading

 Copy Constructor

/*
 * main.cpp
 *
 * COSC 051 Fall 2018
 * Project #4
 *
 * Due on: NOV 21, 2018
 * Author: <your NetID>
 *
 *
 * In accordance with the class policies and Georgetown's
 * Honor Code, I certify that, with the exception of the
 * class resources and those items noted below, I have neither
 * given nor received any assistance on this project.
 *
 * References not otherwise commented within the program source code.
 * Note that you should not mention any help from the TAs, the professor,
 * or any code taken from the class textbooks.
 */

Project 4 November 8, 2108

COSC 051 Fall 2018 Page 7 of 9

How to approach this program

For this project several milestones are provided. You are NOT required to turn anything in or to meet these
milestones. Make sure that your code compiles and runs prior to moving on to the next milestone.

Design and Test Plan Idea Sketch:

Milestone 1: Days 1 - 2

 Create an empty source code file; insert heading comments (copy and paste from Canvas, edit as

applicable), add preprocessor directives, add using namespace std;

 Add a "skeleton" of function main()

 Add global constants that you plan to reuse from Project #3

Milestone 2 – Days 2 - 4

 Study the project description and bring questions to class

 Copy the provided CounterTop class declaration and paste it into your project

 Write function "stubs" for the class constructors

 Write function "stubs" for any other methods that are not implemented in-line

Milestone 3 – Days 4 - 6

 Copy your control structure for selection (switch or if / else if) from Project #3 and paste it into your

function main()

 Delete (or comment out) the function calls since the functions are going to change and you will want to

implement and test them one at a time.

 Copy your function to display the menu from Project #3 and past it into the new project

 Add code to call the display menu function and test to ensure it is still working

Milestone 4 – Days 6 - 8

 Write your implementation code for the CounterTop class default constructor

 Write your implementation code for the CounterTop class constructor with parameters

 Write your implementation code for the CounterTop class copy constructor

 Write your implementation code for the other CounterTop class member functions

 Write your implementation code for the CounterTop class non-member functions

 Perform unit testing

o Instantiate a CounterTop object using the default constructor

o Instantiate a CounterTop object using the constructor with parameters

o Instantiate a CounterTop object using the copy constructor

o Invoke each object's accessor functions to output data member values to the screen and verify

that the values are correct

o Invoke each object's mutator functions to update the data members and output the new values

to the screen to verify that changes were made

o Invoke each object's methods that calculate area, materials required, and costing data; verify

that the calculated values are correct

o Invoke each object's overloaded stream insertion operator and verify the output is correct

Project 4 November 8, 2108

COSC 051 Fall 2018 Page 8 of 9

o Invoke each object's overloaded stream extraction operator and verify data members are

accurately updated

Milestone 5 – Days 10 - 11

 Modify the upload function

o Remove code that used parallel vectors

o Remove calculations (area, materials required, costing data) those should all be calculated in

CounterTop class methods now

o Add code to instantiate a CounterTop object for each valid row of file data, initialize the object's

data members with that row of data, append the object to the vector of CounterTop objects

passed in to the reference parameter

Milestone 6 – Days 12

 Modify the allDetails function

 Modify the orderDetails function

 Modify the summaryByStone function

 Modify the summaryByRegion function

Milestone 7 – Days 12 - 14

 Perform integration testing

 Copy to the server and verify that your code compiles and runs in that environment

 Submit your project early!

Project 4 November 8, 2108

COSC 051 Fall 2018 Page 9 of 9

Grade Rubric

