
COSC 051 Page 1 of 24

Basic UNIX Commands

Created by : M.S. Schmalz (Thank you Mark!)

This section reviews UNIX file, directory, and system commands, and is
organized as follows:

3.1. The UNIX Command Line Interface
3.2. Overview of UNIX File System
3.3. UNIX Documentation via man command
3.4. File Commands
3.5. Directory Commands
3.6. Basic System Commands

Information in this section was compiled from a variety of text- and Web-based
sources, and is not to be used for any commercial purpose.

UNIX implementations employ a shell that accepts user commands and invokes

the appropriate Operating System (OS) processes. These OS routines can act on
files, some of which can be executable, others of which are data or

documentation files. Additionally, UNIX provides the man utility to help users
view documentation about a given command or group of commands. UNIX
file, directory, and basic system commands enable one to (a) navigate through a

UNIX-based computer system and (b) locate, retrieve, modify, or store

information organized in files or hierarchical structures called directories.

3.1. The UNIX Command Line Interface

UNIX users run one of a collection of programs, the most frequently used of

which is called a "shell". Numerous shells have been developed over the years
(e.g., Korn shell, C shell, etc.)

When you open a shell, you will see a prompt on the screen. The prompt can be
the name of your computer followed by a special character, like "%" or ">".

The whole prompt might look like this:

Example of UNIX Prompt: hausdorff% ,

COSC 051 Page 2 of 24

which would mean that (a) you are using a computer called "hausdorff", and (b)

the shell is waiting for your keyboard input (signified by "%"). Since prompt
formats vary widely, your shell's prompt might be different from the example

shown above.

Convention. Throughout these course notes, the symbol "%" indicates the end

of the prompt, the symbol after which you type a command or statement into

the C-shell.

At the prompt, if you type the name of a program to be run followed by

the Enter key, then the shell will run the program. When the program is done,

you are sent back to the shell. Many programs that the shell runs are similar to
traditional operating system commands (e.g., the directory listing

command DIR in MS-DOS). To get a directory listing in UNIX, type "ls" and
press to list the contents of your directory.

Example. If you want to invoke a UNIX directory listing, the system
prompt and the string you type (emboldened) would appear as follows:

% ls

Many UNIX programs or commands have options that change the command's

functionality. In the UNIX command line, options are usually preceded by a

dash.

Example. Detailed information about files in the current directory can be

obtained by typing ls -l, i.e.,

Detailed File Information: % ls -l

Here, the "-" precedes an option ("l", which stands for long).

Screen output from the ls -l command should look similar to the following. In
an actual UNIX session, a user's login-name would be substituted for
"bsimpson":

 total 6

 -rw-r--r-- 1 bsimpson 123 Jun 23 1998 -i

 drwxr-S--- 2 bsimpson 512 Apr 7 12:31 Articles/

 drwxr-s--- 1 bsimpson 512 May 2 14:01 News/

 drwxr-s--- 4 bsimpson 1024 Apr 11 14:17 programs/

 -rw------- 1 bsimpson 1891 May 4 11:56 dead.letter

 -rw------- 1 bsimpson 25247 May 4 11:33 mbox

COSC 051 Page 3 of 24

In Section 3.3, we will describe in detail the meaning of the preceding display,

as well as the function of UNIX file commands. Now that you know what the
command line is and how to use it, we will digress briefly to discuss the UNIX

file system.

3.2. Overview of UNIX File System

When a disk is formatted, the physical disk is divided into a number of

partitions, which are abstractions, each of which has an associated file system.
The file system consists of hierarchically-arranged subdirectories and files that

can be conveniently represented by an abstraction called a directory tree. A

directory tree that might be found in a UNIX file system is exemplified in
Figure 3.2.1.

Figure 3.2.1. Tree representation of an example UNIX file system.

3.2.1. UNIX System Directories

Several standard directories typically appear in a UNIX filesystem, as
follows:

dev directory contains special device files that are used to drive hardware
objects such as CD-ROM, floppy disk, etc. These files will be discussed in a

later portion of the course, if time permits.

etc directory files are required for operation of the specific machine or system
that you are using (also called machine-dependent or system-dependent files

COSC 051 Page 4 of 24

home directory houses a collection of user directories on a given system. This is
where your personal files would be kept if you had an account on a UNIX

system such as grove.

opt directory typically contains application-specific subdirectories and files
(e.g., programs such as FrameMaker or a public domain package such as the

image editor xv or graphing package xvgr).

usr directory contains files that can be shared by all users (recall data and
program sharing introduced in the MULTICS operating system)

var directory is comprised of files whose size varies with time, such as
incoming mail and spooler files (e.g., print spool files for printout).

3.2.2. UNIX File Description

A Unix file is specified by a parameter block called an i-node. An i-node exists

on disk for every file that is on that disk, and there exists a copy of the i-node in
kernel memory for every open file. All of the information that UNIX knows

about a file, except the file name, is stored in the i-node, which includes:

File access and file type, known as the mode.

File ownership information, which is important for security

Time stamps that record date and time of last modification, last access, and

last modification of mode

… and much much more!

3.3. UNIX Documentation via man command

The majority of operating systems have an on-line help facility. UNIX
expresses its help information in terms of man pages, which are supposed to

resemble pages from a software manual.

In UNIX, the man command displays information from specially-formatted
reference manuals. These are useful, reasonably complete manual pages that
the user can select by (a) command name, or (b) one-line summaries selected

either by keyword (-k option), or by the name of an associated file (-f option).
If no manual page can be found for a given command, option, or keyword, then

the man program prints an error message.

COSC 051 Page 5 of 24

The man command is invoked using the following syntax:

machine% man {keyword}

For example, on the SunOS system, entering man exit after the command line
prompt yields the following information for the exit command:

 Fortran Library Routines EXIT(3F)

 NAME

 exit - terminate process with status

 SYNOPSIS

 subroutine exit (status)

 integer*4 status

 DESCRIPTION

 exit flushes and closes all the files of the process, and

 notifies the parent process if it is executing a wait. The

 low-order 8 bits of status are available to the parent pro-

 cess. These 8 bits are shifted left 8 bits, and all other

 bits are zero. Therefore, status should be in the range of

 256 - 65280.

 This call never returns.

 The C function exit may cause cleanup actions before the

 final `sys exit'.

 If you call exit without an argument, you get a warning mes-

 sage, and a zero is automatically provided as an argument.

 FILES

 libF77.a

 SEE ALSO

 exit(2), fork(2), fork(3f), wait(2), wait(3f)

 SunOS 5.6 Last change: 98/09/16 1

This documentation has several categories, as follows:

NAME - Gives the name of the command or programming language keyword,

together with a short description of functionality

SYNOPSIS - Expanded description of functionality with respect to the string
that follows NAME

DESCRIPTION - Fully describes the command or programming language

keyword, including options and functionality in detail, often with examples

COSC 051 Page 6 of 24

FILES - Shows what system files are associated with the command or

programming language keyword

SEE ALSO - Provides other commands or programming language keywords

that can be used as arguments to related man calls.

Additionally, at the bottom of the man page is a date of most recent

modification and a version number (in the above example, SunOS 5.6) that tells

you how recent the help or documentation is. The man command further
supports the bugs category, which tells the user or system analyst what known

problems are associated with the command or programming language keyword.

In a simple command like exit listed above, there are few if any known bugs.
However, other commands might have bugs associated with them, as do public-

domain programs that can be run from UNIX.

3.4. File Commands

The UNIX file system supports viewing of directories and file contents, moving

and copying of files, renaming files and setting permissions, and other similar
tasks. These operations are standard on modern computer file systems.

3.4.1. Viewing Directory File Information

Recall the example output of the ls -l command given in Section 3.1:

total 6

-rw-r--r-- 1 bsimpson 123 Jun 23 1991 -i

drwxr-S--- 2 bsimpson 512 Apr 7 12:31 Articles/

drwxr-s--- 1 bsimpson 512 May 2 14:01 News/

drwxr-s--- 4 bsimpson 1024 Apr 11 14:17 programs/

-rw------- 1 bsimpson 1891 May 4 11:56 dead.letter

-rw------- 1 bsimpson 25247 May 4 11:33 mbox

The first column (e.g. -rw-r--r--), pertains to file permissions, namely, who has

access to your files and what they can do with them (r = "read", w = "write",

etc.).

The name (bsimpson) is the login-i.d. of the person who owns the files (should

be you). The number after that is how many bytes the file uses, followed by the
creation date/time and finally the file name. (Some systems have different

formats for ls output, so check with your consultant or system administrator if
you have questions.)

COSC 051 Page 7 of 24

Example. In the preceding directory listing, file mbox is readable and writeable

by bsimpson, occupies 25,247 bytes on disk, and was created May 4 of the
current year at 11:33am.

Another option for the ls command is -a, where a denotes all. Certain files in

your directory are usally invisible to the ls or ls -l command. (A file is
invisible if its name begins with ".") These hidden files are usually system-

oriented files that are transparent to a user's day-to-day operations. If you had
to look at these every day, they would probably clutter up your directory

listing. By typing

% ls -a

you can obtain a listing of all your regular files, plus several files beginning

with ".", for example, ., .., .cshrc, .login, .newsrc and several others.

One can usually combine options on the ls command. For example, to detailed

information on all of your files can be produced by typing ls -a -l or ls -l -

a.

Efficient Usage Tip. With some commands (like ls) you can put several
options after just one dash, for example,

ls -al or ls -la.

3.4.2. Moving Files

The command mv, which means move, allows a user to move or rename files.

For safety, mv should be used with the -i option, which asks you if you really
want to overwrite a file. You are also prompted if you try to rename a file to a

name that exists in the current directory. New users have the -i option set by

default. The following discussion explains two different forms of mv that you
can use.

mv file1 file2

This form of mv changes the name of a file (from file1 to file2). This command
also applies to directories. For example, to rename a directory, use the directory

name instead of one or more filenames.

mv file1 ... fileN directory

COSC 051 Page 8 of 24

This form of the mv command will move one or more files (separated by spaces)
into the designated directory, which is the last argument on the command line.

Note that file1 ... fileN can be either file or directory names.

Example. Given the following UNIX session:
% ls

a.out* cop3610/ emg3312/ private/ typescript

% mv a.out typescript

remove typescript? n

% ls

a.out* cop3610/ emg3312/ private/ typescript

% mv a.out bogus

% ls

bogus* cop3610/ emg3312/ private/ typescript

% mv bogus typescript cop3610

% ls

cop3610/ emg3312/ private/

COSC 051 Page 9 of 24

% ls cop3610

bogus* typescript

The first mv attempted to rename a.out to `typescript (a file which already

exists). Since the -i option is used by default, the question remove

typescript? was returned because the file `typescript already exists. By

answering y, the target file typescript would have been overwritten by the

file a.out. Answering nsimply cancels the move process.

In the second use of mv, a.out was renamed to bogus.

The third mv command moved the bogus and typescript files into

the cop3610 directory.

3.4.3. Copying Files

To copy a file, use cp, which means copy. The cp command has two formats

that are analogous to the mv command formats. The only difference between the

these commands is that cp doesn't remove the original file. Thus we say
that renaming a file is a destructive form of copying, because the source file is

removed.

Similar to mv, cp also offers a -i option. New users have this option set by

default. Again, note that cp and mv are almost identical in usage.

3.4.4. Removing Files

The command rm means remove and is used to erase files. For safety, this

command should almost always be used with the interactive option -i. Thus,
whenever you remove a file you will be asked to verify the removal of the file.

New users have rm initialized to use the -i option by default.

Example.

% ls

COSC 051 Page 10 of 24

a.out* cop3610/ emg3312/ private/ tempfile typescript

% rm -i tempfile

rm: remove tempfile? y

% ls

a.out* cop3610/ emg3312/ private/ typescript

In this example, the file tempfile was removed. Note that rm asked

if tempfile should really be removed (the corresponding prompt is
emboldened).

Note: When you remove a file with rm, the file is no longer available from the
user's perspective - you will not be able to get it back unless you request a tape

backup dump from the systems staff. Most UNIX systems do not have

an undelete command .

3.4.5. Changing File Permissions

On a multi-user system, keeping selected files out of the reach of prying eyes is
important. As a (relatively weak) security measure, the Unix operating system

has built-in file permissions feature.

By typing ls -l, we have seen that a long listing of the files in the current
directory can be displayed. An example is displayed below. As noted

previously, the letters and dashes on the left side of the listing represent the

permissions set on each file or directory.

Example.

% ls -l

drwxr-xr-x 11 bsimpson 572 Nov 16 05:11 drafts/

COSC 051 Page 11 of 24

-rw------- 1 bsimpson 1 Dec 10 20:04 termpaper

The letter in the first column describes the type of the file, while the other nine

letters describe the file's permissions, which indicate who can access the file
and how it can be accessed.

In order to understand the concept of file security at a basic level, the following
permission codes are listed:

- : permission is not set

r : read permission is set

w : write permission is set

x : execute permission is set

d : the file represents a directory

The nine permission characters are partitioned into three sets of three characters

each, where each set of three characters contains r, w and x codes. The three
partitions comprise an access control list, and are described as follows:

user - Permissions in the first left-hand group of three characters control the
user's access to the file. If the current user is not the owner of the file, then the

user might not be able to access that file, depending on how the permissions are

set. To find the owner of a file, use ls -l, and look at the username

(e.g., bsimpson in the preceding example).

group - A collection of users can be formally aggregated in a group, which is a
list of permissible usernames. For example, a group cop3610 could contain the
usernames of all students enrolled for this course in a given semester. User

permissions thus control the access that people in the group(s) assigned to the

file have. You can use the command ls -lg to list all groups associated with
each file.

other - Users in the other partition comprise all users not in

the user or group partitions. The other permissions control access that users in
the rest of the world (who can login to your system) have to each file.

COSC 051 Page 12 of 24

Examples.

-rw------- 1 instr cop3610 7830 Nov 19 15:06 hw2

Only the owner (instr) of the file hw2 has permission to read and write to the

file.

-rw-r----- 1 instr cop3610 17820 Nov 19 15:06 hw1

This is a file that is readable by both the owner (instr) and by users that are in

the cop3610 group. However, only the owner has write permission to the file

(rw code in the left-hand group of three characters).

drwxr-xr-x 6 instr staff 512 Apr 19 22:27 /home/instr/410/

This is a directory (as shown by the left-hand d) that is readable and executable
by everyone, but can be written to only by the owner (instr). The groups field

contains staff, which is usually a group of privileged users.

-rw-rw-rw- 1 instr cop3610 783 Sep 18 15:06 temp

This file (temp) is readable and writable by all users.

When a file or directory is created, UNIX sets default file permissions

according to the umask descriptor in your .cshrc file. To change the permissions

on a file, the chmod command is used, which has the following form:

chmod mode file(s)

where mode specifies the change of permissions on the specified file(s).

The mode is specified as follows:

Step 1. Choose one or more permission partitions by

specifying u (user), g (group), o (other), or a (all).

Step 2. Type + (add permission) or - (delete permission).

Step 3.Specify the permissions to be changed using r (read), w (write),

or x (execute).

Here follow three examples of chmod usage.
Example 1.

% ls -l

COSC 051 Page 13 of 24

drwxr-xr-x 11 bsimpson 572 Nov 16 05:11 drafts/

-rw------- 1 bsimpson 5666 Dec 10 20:04 termpaper

% chmod go+r termpaper

This use of chmod gave read access for group and others to the
file termpaper, as shown below:
% ls -l

drwxr-xr-x 11 bsimpson 572 Nov 16 05:11 drafts/

-rw-r--r-- 1 bsimpson 5666 Dec 10 20:04 termpaper

Example 2. Assume the file status shown at the end of the previous
example.

% chmod o-rx drafts

% ls -l

drwxr-x--- 11 bsimpson 572 Nov 16 05:11 drafts/

-rw-r--r-- 1 bsimpson 5666 Dec 10 20:04 termpaper

This example removed read and execute access for others from
the drafts directory.

Example 3. Assume the file status shown at the end of the previous
example.

% chmod go-rwx termpaper

% ls -l

drwxr-x--- 11 bsimpson 572 Nov 16 05:11 drafts/

-rw------- 1 bsimpson 5666 Dec 10 20:04 termpaper

COSC 051 Page 14 of 24

In this example, the chmod command is directed to remove all permissions

for group and others from termpaper.

Note: To make a directory accessible to everyone, one must
specify group and others read and execute permissions for the entire directory.

For example:

chmod go+rx directory

.

3.4.6. Viewing File Contents

We begin with the cat command, then progress to the more command.

The command cat means concatenate and is often used to view short files.

Supplying cat with multiple file names, as follows:

cat file1 file2 ... fileN

will display each file sequentially in a continuous stream of text. This is why

the command is called concatenate. If a file is large and you want to use cat to

view it, you will have to have quick reflexes, and use {Ctrl}-s and {Ctrl}-q to
stop and restart scrolling of text so you can get a chance to view it. On modern

computers, scrolling is usually so fast that you will likely lose the text you are

trying to see. Thus, we recommend the use of commands such

as more or less to view your files.

The commands more and less are commonly used to view files one screen at a
time. When you use either of these commands, you will have an information

bar at the bottom of the screen. For example, you can press the {spacebar} to

go to the next screen, b to go back a page, or the {Return} to scroll the file

forward a line at a time. When you finally get to the end of the file, more will

return a Unix prompt, while less will wait for you to press q to quit. The

following list of options will work for both more and lesscommands, unless
otherwise indicated.

{spacebar} - Takes you to the next page.

b - Takes you to the previous page.

COSC 051 Page 15 of 24

{Enter} key - Scrolls forward one line.

k - Scrolls backward one line (less only).

g - Takes you to the beginning of the file (less only).

G - Takes you to the end of the file (less only).

h - Shows you a help screen.

/pattern - Goes to the next occurrence of pattern in the file. When you finish

typing in the pattern, you must press the {Enter} key. Here, pattern is a regular
expression, which we will define later in this course.

n - Search forward for another occurrence of the pattern previously searched for

with /.

r - Search backwards for a previous occurrence of the pattern previously

searched for with /.

q - Quits the more or less program.

Either program works, but less is much more flexible. Backward scrolling is

just just one of many features that less has, which more does not. We suggest

using less if you want full-featured file display.

3.4.7. Wildcard Usage

In certain cases, UNIX supports application of a command to multiple files.
The command length and complexity can be reduced via wildcard

characters for efficient matching of filenames. Wildcard characters are:

1. ? -- matches any one character.
2. * -- matches any contiguous group (string) of zero or more

characters.

To better understand the use of wildcards, let us consider the following

examples.

Example. Let a directory contain the files file, file2, file3, fun, fun2, mbox,

and readme. Here follows a terminal interactive session, where brackets ([])
contain explanations that do not appear on the computer monitor:

COSC 051 Page 16 of 24

% ls * [* matches all filenames]

file file2 file3 fun fun2 mbox readme

% ls f* [f* matches all filenames beginning with f]

file file2 file3 fun fun2

% ls file? [file? matches all filenames of length 5

beginning with file]

file2 file3

% ls ???? [???? matches all filenames of length 4]

file mbox

The first example shows ls with *, which matches all files in the directory
(since all filenames have 0 or more characters).

In the second example, f* matches all the files beginning with an f, which are
listed.

The third example uses file? to match all filenames that begin with the

word file and have one character following that word.

In the fourth example, four ? characters in a row match all filenames that are
four and only four characters long.

Wildcards should be used with caution. For example, when used with a

destructive command like rm, the wildcard "*" could help you remove all the
files in your directory!

3.5. Directory Commands

Having covered file commands, we now turn to commands related to

directories, which are collections of files and other directories.

3.5.1. Discovering your Location

COSC 051 Page 17 of 24

It is often difficult to remember where you are within a given file system, due

to the tree structure that usually has many levels. To make the location of the

current directory clear to you, UNIX provides the pwd command, which
means present working directory.

Example. Using the previous login i.d. of bsimpson, typing the command pwd in
B. Simpson's home directory would yield the following interactive session:

% pwd

/home/bsimpson

This also holds for any location that you are at in the file system.

3.5.2. Changing the Directory

To reset the current directory, which is like moving from one directory to

another directory, UNIX provides the cd command, which means change
directory. Whenever you need to move to your home directory, just

type cd with no arguments. If you specify a directory name as an

argument, cd will attempt to located that directory, then set it as the current
directory if it is a valid directory in the UNIX filesystem.

Example. Suppose you want to view files in bsimpson's `cop3610' directory.
Then, you would type:

% cd ~bsimpson/cop3610

% pwd

/home/bsimpson/cop3610

%ls -l

and the filenames would be displayed.

COSC 051 Page 18 of 24

Important Note: the tilde preceding bsimpson is expanded by the Unix C-shell

into the full pathname of that person's home directory, so you do not have to
enter a potentially long pathname.

Suppose B. Simpson has an assign1 directory under cop3610. To move there,
type

% cd assign1

% pwd

/home/bsimpson/cop3610/assign1

If you use `..' as the argument, cd will bring you up a level in the directory
tree.

Example. Assume the filesystem from the previous example.
% cd ..

% pwd

/home/bsimpson/cop3610

3.5.3. Viewing Directory Contents

We've already overviewed the ls command for listing directory contents,
together with the "l" and "a" options. Several commonly-used options follow:

-a : Lists all the files in the directory, including hidden files.

-F : Appends a single character to filenames on the display only that aren't text
files, to denote file type. For example, directories have a trailing / and
executable files have a trailing *. New users have this option set by default.

Hence, the examples of ls in these course notes assume that this option is being
used.

COSC 051 Page 19 of 24

-l : Lists in long format, telling (from left to right) the file's permissions,
number of links to the file, the file's owner, the file's size in bytes, and the time

the file was last modified. Examples were provided previously.

-g : In conjunction with the -l option, the -g option of ls includes the file's
group following the owner field for each file.

-R : Used to generate a recursive listing of all directories encountered below
the level of the current directory.

Note that ls lists the current directory by default, if you do not specify the
name of a file or directory you wish to list. Some interesting results can occur,
as shown below.

Example. Suppose you are in bsimpson's home directory, and you type ls -a.
If the directory is not secured, you might see the following:

% ls -a

./ .cshrc .login .msgsrc cop3610/ private/

../ .emacs .logout a.out* emg3312/

typescript

Here, the two files called "." and ".." are directory links. In particular, "." is a

link to the current directory, and ".." is a link to the parent of the current

directory. You can backtrack upward through a directory structure by using "cd

.." to pop up one directory level.

3.5.4. Creating a New Directory

Users can create new directories using the mkdir command. Prior to this, one
must determine where the directory is to be placed. For example, a directory

can be located one level below one's home directory or subdirectory.

Example. Let bsimpson create a directory within
his emg3312 directory:

% pwd [Locate the parent directory of

the new directory]

/home/bsimpson/emg3312

% mkdir drafts [Make the new directory]

COSC 051 Page 20 of 24

% ls [Check to be sure that the new

directory is there]

drafts/ termpaper

Recall that, when you create a directory, its permissions and the default
permissions of all its children (files and directories) are set according to

the umask setting. It is always wise to view permissions with the ls -

l command, then change them with the chmod command.

3.5.5. Removing an Existing Directory

Occasionally, a user may decide he wants to remove a directory.
(Sometimes this needs to be done to make room for more files in your
home directory.) In this case, one uses the rmdir command, which
means remove directory. However, the directory to be removed must be
empty of all files and subdirectories. Otherwise, rmdir will inform you that
the directory is not empty and will not remove it.

Example. Assuming that bsimpson has a drafts directory, let us try
to remove that directory using rmdir:

% pwd [check the current

directory]

/home/bsimpson/emg3312

 [this is the current directory]

% ls [list contents of

current directory]

drafts/ termpaper

% rmdir drafts [try to remove the

drafts directory]

rmdir: drafts: Directory not empty [this is an error

message from rmdir]

COSC 051 Page 21 of 24

% ls drafts [o.k., let's see what is

in "drafts"]

monologue notes

 [contents of directory "drafts"]

% rm drafts/* [try to remove contents

of directory "drafts"]

rm: remove drafts/monologue? y ["rm" asks do you really

want to do this?

rm: remove drafts/notes? y ...and you answer "y"

for yes]

% ls drafts [check to see if files

have been removed]

 [no listing => directory

"drafts" is empty]

% rmdir drafts [now we can remove

"drafts"]

% ls [so what is left under

emg3312?]

termpaper [...only the "termpaper"

directory remains]

Note that bsimpson first had to remove (or move) the files from the

directory drafts before removing the directory itself. Note also that the

files were removed with rm followed by a wildcard ("*").

Important Note: Upon the removal of a directory, rmdir will not tell you
that the directory was removed. Instead, you are supposed to use ls to see
that the directory is actually gone. This is another little idiosyncracy of
UNIX that users love to hate.

3.5.6. Directory and File Command Summary

COSC 051 Page 22 of 24

Here follows a summary of the UNIX file and directory commands covered in

this section:

pwd
(present working directory) Display the full pathname of the current
directory.

cd directory

(change directory) Changes the current directory. If you specify no
arguments, then cd will bring you back to your home directory.

ls directory ...

(list directory) Lists the contents of a directory or directories. If the
directory name is unspecified, then ls will list the contents of the
current directory. You can also supply filename(s) instead of a
directory name, to get more information about one or more files.

mkdir directory ...
(make directory) Create a directory or directories.

rmdir directory ...
(remove directory) Remove an empty directory or directories (the
directories must not contain any files).

cat file1 ...
(concatenate) Used to view a file or files continuously on your
terminal. If you use cat to view a long file, it is necessary to
use {Ctrl}-s keys to pause the screen and {Ctrl}-q keys to unpause.
Otherwise, file contents will be displayed too fast for you to

read them. For files longer than one screen, it is recommended

that you use either more or less to view the file.

more file
less file

These two programs display a file one screen at a time, and offer

viewing options such as paging backwards through a file and

pattern searching. In a typical UNIX idiosyncrasy, less is the

more sophisticated of the two and has features that aren't found

in more.

rm file1 ...
(remove) Removes the specified file(s).

mv file1 file2
mv file1 ... fileN directory

(move) Moves a file or directory. In the first form, file1 will

be moved to (renamed as) file2. The second form will move a

number of files into a directory which you specify as the final

argument on the command line. Directory names can be used in

place of the filenames in either of the forms, to move or rename

directories.

cp file1 file2
cp file1 ... fileN directory

COSC 051 Page 23 of 24

(copy) Copies files. In the first form, file1 will be copied to a

file called file2. The second form will copy a number of files

into a directory which you specify as the final argument on the

command line.

chmod mode file1 ...
(change mode) Changes file permissions. The mode specifies how

permissions are to be changed for the listed file(s).
This terminates our overview of UNIX file and directory commands. We

next discuss commands that affect the computer system directly.

3.6. Basic System Commands

When using a computer or networked workstation, it is occasionally

useful to perform system functions such as determining who is using the

computer, what is the date and time, and so forth. UNIX commands that

affect the system without changing files or directories are

called system commands. Several frequently-used system commands are

reviewed, as follows.

3.6.1. N/A

3.6.2. Getting the Date and Time

UNIX has a convenient method for showing you what time it is. Just

type date on the command line, and you will get a date and 24-hour time

display like this:

Example.

% date

Tue Feb 8 19:36:33 EST 2000

This means that today is Tuesday, 8 February 2000, and the time is

7:36:33 pm Eastern Standard Time.

Finding Out Who is Logged In

Suppose you happen upon a UNIX workstation and someone is logged in.

Your first inclination might be to ask around and see who is using the

computer. Or, you can type whoami at an available prompt to see who the

user is.

Example.

% whoami

hkmung

This concludes our overview of basic UNIX commands. We next discuss the

software development process with a UNIX operating system.

References

COSC 051 Page 24 of 24

