
Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Starting Out with C++

Early Objects

Eighth Edition

by Tony Gaddis, Judy Walters,

and Godfrey Muganda

Chapter 11: More About Classes and

Object-Oriented Programming

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

11.1 The this Pointer and Constant
Member Functions

11.2 Static Members

11.3 Friends of Classes

11.4 Memberwise Assignment

11.5 Copy Constructors

11.6 Operator Overloading

11.7 Type Conversion Operators

11-2

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics (continued)

11.8 Convert Constructors

11-3

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.1 The this Pointer and Constant

Member Functions

• this pointer:

- Implicit parameter passed to a member

function

- points to the object calling the function

• const member function:

- does not modify its calling object

11-4

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using the this Pointer

Can be used to access members that
may be hidden by parameters with the
same name:

class SomeClass
{

private:
int num;

public:
void setNum(int num)
{ this->num = num; }

};

11-5

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Constant Member Functions

• Declared with keyword const

• When const appears in the parameter list,
int setNum (const int num)

the function is prevented from modifying the
parameter. The parameter is read-only.

• When const follows the parameter list,
int getX()const

the function is prevented from modifying the object.

11-6

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.2 Static Members

• Static member variable:

– One instance of variable for the entire class

– Shared by all objects of the class

• Static member function:

– Can be used to access static member

variables

– Can be called before any class objects are
created

11-7

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Variables

1) Must be declared in class with keyword
static:
class IntVal
{
public:

intVal(int val = 0)
{ value = val; valCount++ }
int getVal();
void setVal(int);

private:
int value;
static int valCount;

};

11-8

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Variables

2) Must be defined outside of the class:

class IntVal

{

//In-class declaration

static int valCount;

//Other members not shown

};

//Definition outside of class

int IntVal::valCount = 0;

11-9

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Variables

3) Can be accessed or modified by any
object of the class: Modifications by one
object are visible to all objects of the
class:
IntVal val1, val2;

11-10

valCount

val1 val22

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Functions

1)Declared with static before return type:

class IntVal

{ public:

static int getValCount()

{ return valCount; }

private:

int value;

static int valCount;

};

11-11

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Functions

2) Can be called independently of class
objects, through the class name:

cout << IntVal::getValCount();

3) Because of item 2 above, the this
pointer cannot be used

4) Can be called before any objects of the
class have been created

5) Used primarily to manipulate static
member variables of the class

11-12

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.3 Friends of Classes

• Friend function: a function that is not a
member of a class, but has access to
private members of the class

• A friend function can be a stand-alone
function or a member function of another
class

• It is declared a friend of a class with the
friend keyword in the function prototype

11-13

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Friend Function Declarations

1) Friend function may be a stand-alone
function:

class aClass
{

private:
int x;
friend void fSet(aClass &c, int a);

};

void fSet(aClass &c, int a)
{

c.x = a;
}

11-14

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Friend Function Declarations

2) Friend function may be a member of another
class:

class aClass
{ private:

int x;
friend void OtherClass::fSet

(aClass &c, int a);
};
class OtherClass
{ public:

void fSet(aClass &c, int a)
{ c.x = a; }

};

11-15

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Friend Class Declaration

3) An entire class can be declared a friend of a
class:

class aClass
{private:

int x;
friend class frClass;

};

class frClass
{public:
void fSet(aClass &c,int a){c.x = a;}
int fGet(aClass c){return c.x;}

};

11-16

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Friend Class Declaration

• If frClass is a friend of aClass, then all
member functions of frClass have
unrestricted access to all members of
aClass, including the private members.

• In general, restrict the property of
Friendship to only those functions that must
have access to the private members of a
class.

11-17

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Memberwise Assignment

• Can use = to assign one object to another,
or to initialize an object with an object’s
data

• Examples (assuming class V):

V v1, v2;

… // statements that assign

… // values to members of v1

v2 = v1; // assignment

V v3 = v2; // initialization

11-18

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Copy Constructors

• Special constructor used when a newly

created object is initialized to the data of

another object of same class

• Default copy constructor copies field-to-

field, using memberwise assignment

• The default copy constructor works fine in

most cases

11-19

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copy Constructors

Problems occur when objects contain

pointers to dynamic storage:
class CpClass
{
private:
int *p;

public:
CpClass(int v=0)
{ p = new int; *p = v;}

~CpClass(){delete p;}
};

11-20

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default Constructor Causes Sharing of

Storage

CpClass c1(5);

if (true)

{

CpClass c2=c1;

}

// c1 is corrupted

// when c2 goes

// out of scope and

// its destructor

// executes

11-21

c1

c2

5

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programmer-Defined Copy Constructors

• A copy constructor is one that takes a
reference parameter to another object of
the same class

• The copy constructor uses the data in the
object passed as parameter to initialize the
object being created

• Reference parameter should be const to
avoid potential for data corruption

11-22

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programmer-Defined Copy Constructors

• The copy constructor avoids problems
caused by memory sharing

• Can allocate separate memory to hold new
object’s dynamic member data

• Can make new object’s pointer point to this
memory

• Copies the data, not the pointer, from the
original object to the new object

11-23

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copy Constructor Example

class CpClass

{

int *p;

public:

CpClass(const CpClass &obj)

{ p = new int; *p = *obj.p; }

CpClass(int v=0)

{ p = new int; *p = v; }

~CpClass(){delete p;}

};

11-24

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copy Constructor – When Is It Used?

A copy constructor is called when

• An object is initialized from an object of the same

class

• An object is passed by value to a function

• An object is returned using a return statement

from a function

11-25

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.6 Operator Overloading

• Operators such as =, +, and others can be
redefined for use with objects of a class

• The name of the function for the overloaded
operator is operator followed by the
operator symbol, e.g.,
operator+ is the overloaded + operator and

operator= is the overloaded = operator

11-26

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operator Overloading

• Operators can be overloaded as

- instance member functions, or as

- friend functions

• The overloaded operator must have the
same number of parameters as the
standard version. For example,
operator= must have two parameters,
since the standard = operator takes two
parameters.

11-27

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Operators as Instance

Members

A binary operator that is overloaded as an
instance member needs only one parameter,
which represents the operand on the right:
class OpClass

{

private:

int x;

public:

OpClass operator+(OpClass right);

};

11-28

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Operators as Instance

Members

• The left operand of the overloaded binary

operator is the calling object

• The implicit left parameter is accessed
through the this pointer

OpClass OpClass::operator+(OpClass r)
{ OpClass sum;

sum.x = this->x + r.x;
return sum;

}

11-29

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Invoking an Overloaded Operator

• Operator can be invoked as a member
function:

OpClass a, b, s;

s = a.operator+(b);

• It can also be invoked in the more
conventional manner:

OpClass a, b, s;

s = a + b;

11-30

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Assignment

• Overloading the assignment operator solves
problems with object assignment when an
object contains pointer to dynamic memory.

• Assignment operator is most naturally
overloaded as an instance member function

• It needs to return a value of the assigned
object to allow cascaded assignments such
as
a = b = c;

11-31

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Assignment

Assignment overloaded as a member function:
class CpClass
{

int *p;
public:
CpClass(int v=0)
{ p = new int; *p = v;
~CpClass(){delete p;}
CpClass operator=(CpClass);

};

11-32

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Assignment

Implementation returns a value:
CpClass CpClass::operator=(CpClass r)
{

*p = *r.p;
return *this;

};

Invoking the assignment operator:
CpClass a, x(45);

a.operator=(x); // either of these
a = x; // lines can be used

11-33

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Notes on Overloaded Operators

• Overloading can change the entire

meaning of an operator

• Most operators can be overloaded

• Cannot change the number of operands of

the operator

• Cannot overload the following operators:

?: . .* sizeof

11-34

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Types of Operators

• ++, -- operators overloaded differently
for prefix vs. postfix notation

• Overloaded relational operators should
return a bool value

• Overloaded stream operators >>, <<
must return istream, ostream objects
and take istream, ostream objects as
parameters

11-35

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloaded [] Operator

• Can be used to create classes that

behave like arrays, providing bounds-

checking on subscripts

• Overloaded [] returns a reference to

object, not an object itself

11-36

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.7 Type Conversion Operators

• Conversion Operators are member
functions that tell the compiler how to
convert an object of the class type to a
value of another type

• The conversion information provided by
the conversion operators is automatically
used by the compiler in assignments,
initializations, and parameter passing

11-37

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Syntax of Conversion Operators

• Conversion operator must be a member
function of the class you are converting from

• The name of the operator is the name of the
type you are converting to

• The operator does not specify a return type

11-38

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion Operator Example

• To convert from a class IntVal to an integer:

class IntVal
{

int x;
public:
IntVal(int a = 0){x = a;}
operator int(){return x;}

};

• Automatic conversion during assignment:

IntVal obj(15); int i;

i = obj; cout << i; // prints 15

11-39

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.8 Convert Constructors

Convert constructors are constructors that take
a single parameter of a type other than the
class in which they are defined

class CCClass

{ int x;
public:
CCClass() //default
CCClass(int a, int b);
CCClass(int a); //convert
CCClass(string s); //convert

};

11-40

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example of a Convert Constructor

The C++ string class has a convert
constructor that converts from C-strings:

class string
{
public:
string(char *); //convert
…

};

11-41

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Uses of Convert Constructors

• They are automatically invoked by the
compiler to create an object from the value
passed as parameter:
string s("hello"); //convert C-string

CCClass obj(24); //convert int

• The compiler allows convert constructors to
be invoked with assignment-like notation:
string s = "hello"; //convert C-string

CCClass obj = 24; //convert int

11-42

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Uses of Convert Constructors

• Convert constructors allow functions that
take the class type as parameter to take
parameters of other types:

void myFun(string s); // needs string
// object

myFun("hello"); // accepts C-string

void myFun(CCClass c);

myFun(34); // accepts int

11-43

Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Starting Out with C++

Early Objects

Eighth Edition

by Tony Gaddis, Judy Walters,

and Godfrey Muganda

Chapter 11: More About Classes and

Object-Oriented Programming

