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11.1  The this Pointer and Constant 

Member Functions

• this pointer:

- Implicit parameter passed to a member

function

- points to the object calling the function

• const member function: 

- does not modify its calling object
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Using the this Pointer

Can be used to access members that 
may be hidden by parameters with the 
same name: 

class SomeClass
{

private:
int num;

public:
void setNum(int num)
{ this->num = num; }

};
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Constant Member Functions

• Declared with keyword const

• When const appears in the parameter list,
int setNum (const int num)

the function is prevented from modifying the 
parameter.  The parameter is read-only.

• When const follows the parameter list,
int getX()const

the function is prevented from modifying the object.
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11.2  Static Members

• Static member variable: 

– One instance of variable for the entire class

– Shared by all objects of the class

• Static member function: 

– Can be used to access static member 

variables

– Can be called before any class objects are 
created
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Static Member Variables

1) Must be declared in class with keyword 
static:
class IntVal
{ 
public:

intVal(int val = 0)
{ value = val; valCount++ } 
int getVal();
void setVal(int);

private:
int value;       
static int valCount;

};
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Static Member Variables

2) Must be defined outside of the class:

class IntVal

{   

//In-class declaration    

static int valCount;

//Other members not shown

};

//Definition outside of class

int IntVal::valCount = 0;
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Static Member Variables

3)  Can be accessed or modified by any 
object of the class: Modifications by one 
object are visible to all objects of the 
class:
IntVal val1, val2;
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Static Member Functions

1)Declared with static before return type:

class IntVal

{ public:

static int getValCount()

{ return valCount; }

private:

int value;       

static int valCount;

};

11-11



Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Member Functions

2) Can be called independently of class
objects, through the class name:

cout << IntVal::getValCount();

3) Because of item 2 above, the this
pointer cannot be used

4) Can be called before any objects of the 
class have been created

5) Used primarily to manipulate static 
member variables of the class
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11.3  Friends of Classes

• Friend function: a function that is not a 
member of a class, but has access to 
private members of the class

• A friend function can be a stand-alone 
function or a member function of another 
class

• It is declared a friend of a class with the 
friend keyword in the function prototype
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Friend Function Declarations

1) Friend function may be a stand-alone 
function:

class aClass
{  

private:
int x;
friend void fSet(aClass &c, int a);

};

void fSet(aClass &c, int a)
{

c.x = a;
} 
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Friend Function Declarations

2) Friend function may be a member of another 
class:

class aClass
{ private:

int x;
friend void OtherClass::fSet

(aClass &c, int a);
};
class OtherClass
{ public:

void fSet(aClass &c, int a)
{ c.x = a; }

};
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Friend Class Declaration

3) An entire class can be declared a friend of a 
class:

class aClass
{private:

int x;
friend class frClass;

};

class frClass
{public:
void fSet(aClass &c,int a){c.x = a;}
int fGet(aClass c){return c.x;}

};
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Friend Class Declaration

• If frClass is a friend of aClass, then all 
member functions of frClass have 
unrestricted access to all members of 
aClass, including the private members.

• In general, restrict the property of 
Friendship to only those functions that must 
have access to the private members of a 
class.
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11.4 Memberwise Assignment

• Can use = to assign one object to another, 
or to initialize an object with an object’s 
data

• Examples (assuming class V):

V v1, v2;

… // statements that assign

… // values to members of v1

v2 = v1;    // assignment

V v3 = v2;  // initialization
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11.5  Copy Constructors

• Special constructor used when a newly 

created object is initialized to the data of 

another object of same class

• Default copy constructor copies field-to-

field, using memberwise assignment

• The default copy constructor works fine in 

most cases
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Copy Constructors

Problems occur when objects contain 

pointers to dynamic storage:
class CpClass
{
private: 
int *p;

public:
CpClass(int v=0)
{ p = new int; *p = v;}

~CpClass(){delete p;}
};
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Default Constructor Causes Sharing of 

Storage 

CpClass c1(5);

if (true)

{

CpClass c2=c1;

}

// c1 is corrupted

// when c2 goes

// out of scope and

// its destructor

// executes 
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Programmer-Defined Copy Constructors

• A copy constructor is one that takes a 
reference parameter to another object of 
the same class

• The copy constructor uses the data in the 
object passed as parameter to initialize the 
object being created

• Reference parameter should be const to 
avoid potential for data corruption
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Programmer-Defined Copy Constructors

• The copy constructor avoids problems 
caused by memory sharing 

• Can allocate separate memory to hold new 
object’s dynamic member data

• Can make new object’s pointer point to this 
memory

• Copies the data, not the pointer, from the 
original object to the new object
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Copy Constructor Example

class CpClass

{ 

int *p;

public:

CpClass(const CpClass &obj)

{ p = new int; *p = *obj.p; }

CpClass(int v=0)

{ p = new int; *p = v; }

~CpClass(){delete p;}

};
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Copy Constructor – When Is It Used?

A copy constructor is called when

• An object is initialized from an object of the same 

class

• An object is passed by value to a function

• An object is returned using a return statement 

from a function
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11.6  Operator Overloading

• Operators such as =, +, and others can be 
redefined for use with objects of a class

• The name of the function for the overloaded 
operator is operator followed by the 
operator symbol, e.g.,
operator+ is the overloaded + operator and

operator= is the overloaded = operator
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Operator Overloading

• Operators can be overloaded as

- instance member functions, or as

- friend functions

• The overloaded operator must have the 
same number of parameters as the 
standard version.  For example, 
operator= must have two parameters, 
since the standard = operator takes two 
parameters.
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Overloading Operators as Instance 

Members

A binary operator that is overloaded as an 
instance member needs only one parameter, 
which represents the operand on the right:
class OpClass

{

private:

int x;

public:

OpClass operator+(OpClass right);

};
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Overloading Operators as Instance 

Members

• The left operand of the overloaded binary 

operator is the calling object

• The implicit left parameter is accessed 
through the this pointer

OpClass OpClass::operator+(OpClass r)
{  OpClass sum;

sum.x = this->x + r.x; 
return sum;

}
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Invoking an Overloaded Operator

• Operator can be invoked as a member 
function:

OpClass a, b, s;

s = a.operator+(b);

• It can also be invoked in the more 
conventional manner:

OpClass a, b, s;

s = a + b;
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Overloading Assignment

• Overloading the assignment operator solves 
problems with object assignment when an 
object contains pointer to dynamic memory.

• Assignment operator is most naturally 
overloaded as an instance member function

• It needs to return a value of the assigned 
object to allow cascaded assignments such 
as
a = b = c;
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Overloading Assignment

Assignment overloaded as a member function:
class CpClass
{ 

int *p;
public:
CpClass(int v=0)
{ p = new int; *p = v;
~CpClass(){delete p;}
CpClass operator=(CpClass);

};

11-32



Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Assignment

Implementation returns a value:
CpClass CpClass::operator=(CpClass r)
{

*p = *r.p;
return *this;

};

Invoking the assignment operator:
CpClass a, x(45);

a.operator=(x); // either of these
a = x;          // lines can be used
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Notes on Overloaded Operators

• Overloading can change the entire 

meaning of an operator

• Most operators can be overloaded

• Cannot change the number of operands of 

the operator

• Cannot overload the following operators:

?:  .  .*  sizeof
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Overloading Types of Operators

• ++, -- operators overloaded differently 
for prefix vs. postfix notation

• Overloaded relational operators should 
return a bool value

• Overloaded stream operators >>, <<
must return istream, ostream objects 
and take istream, ostream objects as 
parameters
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Overloaded [] Operator

• Can be used to create classes that 

behave like arrays, providing bounds-

checking on subscripts

• Overloaded [] returns a reference to 

object, not an object itself
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11.7  Type Conversion Operators

• Conversion Operators are member 
functions that tell the compiler how to 
convert an object of the class type to a 
value of another type

• The conversion information provided by 
the conversion operators is automatically 
used by the compiler in assignments, 
initializations, and parameter passing
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Syntax of Conversion Operators

• Conversion operator must be a member 
function of the class you are converting from

• The name of the operator is the name of the 
type you are converting to

• The operator does not specify a return type
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Conversion Operator Example

• To convert from a class IntVal to an integer:

class IntVal
{

int x;
public:
IntVal(int a = 0){x = a;}
operator int(){return x;}

};

• Automatic conversion during assignment:

IntVal obj(15); int i;

i = obj;  cout << i; // prints 15
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11.8  Convert Constructors

Convert constructors are constructors that take 
a single parameter of a type other than the 
class in which they are defined

class CCClass

{  int x;
public:
CCClass()           //default
CCClass(int a, int b);
CCClass(int a);     //convert
CCClass(string s);  //convert

};
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Example of a Convert Constructor

The C++ string class has a convert 
constructor that converts from C-strings:

class string
{
public:
string(char *);  //convert
…

};
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Uses of Convert Constructors

• They are automatically invoked by the 
compiler to create an object from the value 
passed as parameter:
string s("hello");  //convert C-string

CCClass obj(24);    //convert int

• The compiler allows convert constructors to 
be invoked with assignment-like notation:
string s = "hello"; //convert C-string

CCClass obj = 24;   //convert int
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Uses of Convert Constructors

• Convert constructors allow functions that 
take the class type as parameter to take 
parameters of other types:

void myFun(string s); // needs string
// object

myFun("hello");       // accepts C-string

void myFun(CCClass c);

myFun(34);            // accepts int
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